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Introduction

What is tensor calculus on manifolds?

By tensor calculus it is usually meant
arithmetics of tensor fields
tensor product, contraction
(anti)symmetrization
Lie derivative along a vector field
pullback and pushforward associated to a smooth manifold map
exterior calculus on differential forms
...

On pseudo-Riemannian manifolds:
musical isomorphisms
Levi-Civita connection
curvature tensor
Hodge duality
...
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Introduction

A few words about history

Symbolic tensor calculus is almost as old as computer algebra:

Computer algebra system started to be developed in the 1960’s; for instance
Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

In 1965, J.G. Fletcher developed the GEOM program, to compute the Riemann
tensor of a given metric
In 1969, during his PhD under Pirani supervision, Ray d’Inverno wrote ALAM
(Atlas Lisp Algebraic Manipulator) and used it to compute the
Riemann tensor of Bondi metric. The original calculations took Bondi and his
collaborators 6 months to go. The computation with ALAM took 4 minutes
and yielded to the discovery of 6 errors in the original paper [J.E.F. Skea,

Applications of SHEEP (1994)]

Since then, many software tools for tensor calculus have been developed...
A rather exhaustive list: http://www.xact.es/links.html
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Introduction

Tensor calculus software

Packages for general purpose computer algebra systems

xAct free package for Mathematica [J.-M. Martin-Garcia]

Ricci free package for Mathematica [J.L. Lee]

MathTensor package for Mathematica [S.M. Christensen & L. Parker]

GRTensor III package for Maple [P. Musgrave, D. Pollney & K. Lake]

DifferentialGeometry included in Maple [I.M. Anderson & E.S. Cheb-Terrab]

Atlas 2 for Maple and Mathematica
SageManifolds included in SageMath

Standalone applications

SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, I. Frick, J. Åman, J. Skea, et al.]

Cadabra (free) [K. Peeters]

Redberry (free) [D.A. Bolotin & S.V. Poslavsky]

cf. the complete list at http://www.xact.es/links.html
Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 6 / 38
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Introduction

Tensor calculus software

Two types of tensor computations:

Abstract calculus (index manipulations)

xAct/xTensor
MathTensor
Ricci
Cadabra
Redberry

Component calculus (explicit computations)

xAct/xCoba
Atlas 2
DifferentialGeometry
SageManifolds

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 7 / 38



Introduction

The purpose of this lecture

Present a symbolic tensor calculus method that
runs on fully specified smooth manifolds (described by an atlas)

is not limited to a single coordinate chart or vector frame
runs even on non-parallelizable manifolds
is independent of the symbolic engine (e.g. Pynac/Maxima, SymPy,...) used
to perform calculus at the level of coordinate expressions

with some details of its implementation in SageMath, which has been performed
via the SageManifolds project:

http://sagemanifolds.obspm.fr
by these contributors:

http://sagemanifolds.obspm.fr/authors.html
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Smooth manifolds

Topological manifold

Definition
Let K be a topological field. Given an integer n ≥ 1, a topological manifold of
dimension n over K is a topological space M obeying the following properties:

1 M is a Hausdorff (separated) space
2 M has a countable base: there exists a countable family (Uk)k∈N of open

sets of M such that any open set of M can be written as the union of some
members of this family.

3 Around each point of M , there exists a neighbourhood which is
homeomorphic to an open subset of Kn.

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 10 / 38



Smooth manifolds

SageMath implementation

See the online worksheet

http://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Worksheets/JNCF2018/jncf18_scalar.ipynb

On CoCalc:

https://cocalc.com/share/e3c2938e-d8b0-4efd-8503-cdb313ffead9/
SageManifolds/Worksheets/JNCF2018/jncf18_scalar.ipynb?viewer=
share

Direct links available at
http://sagemanifolds.obspm.fr/jncf2018/
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Smooth manifolds

Manifold classes

UniqueRepresentation Parent

ManifoldSubset
element: ManifoldPoint

TopologicalManifold

DifferentiableManifold

OpenInterval

RealLine

Element

ManifoldPointGeneric SageMath class

SageManifolds class
(differential part)
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Smooth manifolds

Coordinate charts

Property 3 of manifold definition =⇒ labeling points by coordinates
(xα)α∈{0,...,n−1} ∈ Kn.

Definition
Let M be a topological manifold of dimension n over K and U ⊂M be an open
set. A coordinate chart (or simply a chart) on U is a homeomorphism

X : U ⊂M −→ X(U) ⊂ Kn
p 7−→ (x0, . . . , xn−1).

In general, more than one chart is required to cover the entire manifold:

Examples:

at least 2 charts are necessary to cover the n-dimensional sphere Sn (n ≥ 1)
and the torus T2

at least 3 charts are necessary to cover the real projective plane RP2

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 13 / 38
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Smooth manifolds

Atlas

Definition

An atlas on M is a set of pairs (Ui, Xi)i∈I , where I is a set, Ui an open subset
of M and Xi a chart on Ui, such that the union of all Ui’s covers M :⋃

i∈I
Ui =M.

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 14 / 38



Smooth manifolds

Smooth manifolds

For manifolds, the concept of differentiability is defined from the smooth structure
of Kn, via an atlas:

Definition
A smooth manifold over K is a topological manifold M equipped with an atlas
(Ui, Xi)i∈I such that for any non-empty intersection Ui ∩ Uj , the map

Xi ◦X−1j : Xj(Ui ∩ Uj) ⊂ Kn −→ Xi(Ui ∩ Uj) ⊂ Kn

is smooth (i.e. C∞).

The map Xi ◦X−1j is called a transition map or a change of coordinates.

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 15 / 38



Smooth manifolds

Stereographic coordinates

P

P '

N

x

z
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Scalar fields
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Scalar fields

Scalar fields

Definition

Given a smooth manifold M over a topological field K, a scalar field (also called
a scalar-valued function) on M is a smooth map

f : M −→ K
p 7−→ f(p)

A scalar field has different coordinate representations F , F̂ , etc. in different charts
X, X̂, etc. defined on M :

f(p) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart X

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart X̂

) = . . .

F : ImX → K is called a chart function associated to X.

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 18 / 38
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Scalar fields

Scalar field algebra

The set C∞(M) of scalar fields on M has naturally the structure of a
commutative algebra over K

1 it is clearly a vector space over K
2 it is endowed with a commutative ring structure by pointwise multiplication:

∀f, g ∈ C∞(M), ∀p ∈M, (f.g)(p) := f(p)g(p)

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 19 / 38



Scalar fields

Scalar field classes

UniqueRepresentation Parent

ScalarFieldAlgebra
element: ScalarField

category: CommutativeAlgebras(base_field)

DiffScalarFieldAlgebra
element: DiffScalarField

CommutativeAlgebraElement

ScalarField
parent: ScalarFieldAlgebra

DiffScalarField
parent: DiffScalarFieldAlgebra

Generic SageMath class

SageManifolds class
(differential part)

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 20 / 38



Vector fields
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Vector fields

Tangent vectors

Definition
Let M be a smooth manifold of dimension n over the topological field K and
C∞(M) the algebra of scalar fields on M . For p ∈M , a tangent vector at p is
a map

v : C∞(M) −→ K

that is K-linear and such that

∀f, g ∈ C∞(M), v(fg) = v(f)g(p) + f(p)v(g)

Because of the above property, one says that v is a derivation at p.

Proposition

The set TpM of all tangent vectors at p is a vector space of dimension n over K;
it is called the tangent space to M at p.

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 22 / 38
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Vector fields

SageMath implementation

See the online worksheet

http://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Worksheets/JNCF2018/jncf18_vector.ipynb

On CoCalc:

https://cocalc.com/share/e3c2938e-d8b0-4efd-8503-cdb313ffead9/
SageManifolds/Worksheets/JNCF2018/jncf18_vector.ipynb?viewer=
share

Direct links available at
http://sagemanifolds.obspm.fr/jncf2018/
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Vector fields

Tangent bundle

Definition
The tangent bundle of M is the disjoint union of the tangent spaces at all
points of M :

TM =
∐
p∈M

TpM

Elements of TM are usually denoted by (p,v), with v ∈ TpM . The tangent
bundle is canonically endowed with the projection map:

π : TM −→ M
(p,v) 7−→ p

The tangent bundle inherits some manifold structure from M :

Proposition

TM is a smooth manifold of dimension 2n over K (n = dimM).

Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 24 / 38
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Vector fields

Vector fields

Definition
A vector field on M is a continuous right-inverse of the projection map, i.e. a
map

v : M −→ TM
p 7−→ v|p

such that π ◦ v = IdM . In other words, we have

∀p ∈M, v|p ∈ TpM.
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Vector fields

Set of vector fields

The set X(M) of all vector fields on M is endowed with two algebraic structures:
1 X(M) is an infinite-dimensional vector space over K, the scalar multiplication

K× X(M)→ X(M), (λ,v) 7→ λv being defined by

∀p ∈M, (λv)|p = λv|p ,

2 X(M) is a module over the commutative algebra C∞(M) the scalar
multiplication C∞(M)× X(M)→ X(M), (f,v) 7→ fv being defined by

∀p ∈M, (fv)|p = f(p)v|p ,

the right-hand side involving the scalar multiplication by f(p) ∈ K in the
vector space TpM .
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Vector fields

X(M) as a C∞(M)-module

Case where X(M) is a free module
X(M) is a free module over C∞(M) ⇐⇒ X(M) admits a basis

If this occurs, then X(M) is actually a free module of finite rank over C∞(M)
and rankX(M) = dimM = n.
One says then that M is a parallelizable manifold.
A basis (ea)1≤a≤n of X(M) is called a vector frame; for any p ∈M ,
(ea|p)1≤a≤n is a basis of the tangent vector space TpM .
Basis expansion1:

∀v ∈ X(M), v = vaea, with va ∈ C∞(M) (1)

At each point p ∈M , Eq. (1) gives birth to an identity in the tangent space TpM :

v|p = va(p) ea|p , with va(p) ∈ K,

which is nothing but the expansion of the tangent vector v|p on the basis
(ea|p)1≤a≤n of the vector space TpM .

1Einstein’s convention for summation on repeated indices is assumed.
Éric Gourgoulhon Symbolic tensor calculus on manifolds JNCF, 25 Jan 2018 27 / 38



Vector fields

Parallelizable manifolds

M is parallelizable ⇐⇒ X(M) is a free C∞(M)-module of rank n
⇐⇒ M admits a global vector frame
⇐⇒ the tangent bundle is trivial: TM 'M ×Kn

Examples of parallelizable manifolds

Rn (global coordinate chart ⇒ global vector frame)
the circle S1 (rem: no global coordinate chart)
the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group
the 7-sphere S7

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2
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Vector fields

SageMath implementation of vector fields

Choice of the C∞(M)-module point of view for X(M), instead of the
infinite-dimensional K-vector space one

=⇒ implementation advantages:
reduction to finite-dimensional structures: free C∞(U)-modules of rank n on
parallelizable open subsets U ⊂M
for tensor calculus on each parallelizable open set U , use of exactly the same
FiniteRankFreeModule code as for the tangent spaces

Decomposition of M into parallelizable parts

Assumption: the smooth manifold M can be covered by a finite number m of
parallelizable open subsets Ui (1 ≤ i ≤ m)

Example: this holds if M is compact (finite atlas)
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Vector fields

SageMath implementation of vector fields

M =

m⋃
i=1

Ui, with Ui parallelizable

For each i, X(Ui) is a free module of rank n = dimM and is implemented in
SageMath as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

A vector field v ∈ X(M) is then described by its restrictions (vi)1≤i≤m in each of
the Ui’s. Assuming that at least one vector frame is introduced in each of the
Ui’s, (ei,a)1≤a≤n say, the restriction vi of v to Ui is decribed by its components
vai in that frame:

vi = vai ei,a, with vai ∈ C∞(Ui). (2)

The components of vi are stored as a Python dictionary whose keys are the vector
frames:

(vi)._components = {(e) : (vai ), (ê) : (v̂ai ), . . .}
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Vector fields

Module classes

UniqueRepresentation Parent

VectorFieldModule
ring: DiffScalarFieldAlgebra

element: VectorField

ca
te

go
ry

:
Mo
du
le
s

TensorFieldModule
ring: DiffScalarFieldAlgebra

element: TensorField

cat
ego

ry:
Mod

ule
s

VectorFieldFreeModule
ring: DiffScalarFieldAlgebra
element: VectorFieldParal

TensorFieldFreeModule
ring: DiffScalarFieldAlgebra
element: TensorFieldParal

FiniteRankFreeModule
ring: CommutativeRing

element: FiniteRankFreeModuleElement

TensorFreeModule
element:

FreeModuleTensor

TangentSpace
ring: SR
element:

TangentVector

category: Modules

Generic SageMath class

SageManifolds class
(algebraic part)

SageManifolds class
(differential part)
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Vector fields

Tensor field classes

Element

ModuleElement

FreeModuleTensor
parent:

TensorFreeModule

AlternatingContrTensor
parent:

ExtPowerFreeModule

FiniteRankFreeModuleElement
parent:

FiniteRankFreeModule

TangentVector
parent:

TangentSpace

TensorField
parent:

TensorFieldModule

MultivectorField
parent:

MultivectorModule

VectorField
parent:

VectorFieldModule

TensorFieldParal
parent:

TensorFieldFreeModule

MultivectorFieldParal
parent:

MultivectorFreeModule

VectorFieldParal
parent:

VectorFieldFreeModule

Generic SageMath class

SageManifolds class
(algebraic part)

SageManifolds class
(differential part)
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Vector fields

Tensor field storage
TensorField

T

dictionary TensorField._restrictions

domain 1:
U1

TensorFieldParal
T |U1

= T abea ⊗ eb = T â
b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal
T |U2

. . .

dictionary TensorFieldParal._components

frame 1:
(ea)

Components
(T ab)1≤a, b≤n

frame 2:
(εâ)

Components
(T â

b̂
)1≤â, b̂≤n

. . .

dictionary Components._comp

(1, 1) :
DiffScalarField

T 1
1

(1, 2) :
DiffScalarField

T 1
2

. . .

dictionary DiffScalarField._express

chart 1:
(xa)

ChartFunction
T 1

1

(
x1, . . . , xn

) chart 2:
(ya)

ChartFunction
T 1

1

(
y1, . . . , yn

) . . .

dictionary ChartFunction._express

SR:
Expression
x1 cosx2

SymPy: Basic
x1 cosx2

. . .
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Tensor fields

Outline
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Conclusion and perspectives

Status of SageManifolds project

SageManifolds (http://sagemanifolds.obspm.fr/): extends SageMath
towards differential geometry and tensor calculus

∼ 75,000 lines of Python code (including comments and doctests)
submitted to SageMath community as a sequence of 31 tickets
cf. list at https://trac.sagemath.org/ticket/18528
→ first ticket accepted in March 2015,

the 31th one in Jan 2018
a dozen of contributors (developers and reviewers)
cf. http://sagemanifolds.obspm.fr/authors.html

All code is fully included in SageMath 8.1
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Conclusion and perspectives

Current status

Already present (SageMath 8.1):
differentiable manifolds: tangent spaces, vector frames, tensor fields, curves,
pullback and pushforward operators
standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds
all monoterm tensor symmetries taken into account
Lie derivatives of tensor fields
differential forms: exterior and interior products, exterior derivative, Hodge
duality
multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
affine connections (curvature, torsion)
pseudo-Riemannian metrics
computation of geodesics (numerical integration via SageMath/GSL)
some plotting capabilities (charts, points, curves, vector fields)
parallelization (on tensor components) of CPU demanding computations, via
the Python library multiprocessing
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Conclusion and perspectives

Current status

Future prospects:
more symbolic engines (Giac, FriCAS, ...)
extrinsic geometry of pseudo-Riemannian submanifolds
integrals on submanifolds
more graphical outputs
more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.
connection with numerical relativity: using SageMath to explore
numerically-generated spacetimes

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download, documentation, example worksheets, mailing list)
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