Simon-Mars tensor in Curzon-Chazy spacetime

This worksheet demonstrates a few capabilities of <u>SageManifolds</u> (version 1.0, as included in SageMath 7.5) in computations regarding the Curzon-Chazy spacetime. It implements the computation of the Simon-Mars tensor of Curzon-Chazy spacetime used in the article <u>arXiv:1412.6542</u>.

Click <u>here</u> to download the worksheet file (ipynb format). To run it, you must start SageMath with the Jupyter notebook, via the command sage -n jupyter

NB: a version of SageMath at least equal to 7.5 is required to run this worksheet:

```
In [1]: version()
Out[1]: 'SageMath version 7.5.1, Release Date: 2017-01-15'
```

First we set up the notebook to display mathematical objects using LaTeX rendering:

```
In [2]: %display latex
```

Spacetime manifold

We declare the Curzon-Chazy spacetime as a 4-dimensional manifold:

```
In [3]: M = Manifold(4, 'M', latex_name=r'\mathcal{M}')
print(M)
```

4-dimensional differentiable manifold M

We introduce the coordinates (t, r, y, ϕ) with y related to the standard **Weyl-Papapetrou** coordinates (t, r, θ, ϕ) by $y = \cos \theta$:

```
In [4]: X.<t,r,y,ph> = M.chart(r't r:(0,+oo) y:(-1,1) ph:(0,2*pi):\print(X); X

Chart (M, (t, r, y, ph))

Out[4]: (\mathcal{M},(t,r,y,\phi))
```

Metric tensor

We declare the only parameter of the Curzon-Chazy spacetime, which is the mass m as a symbolic variable:

```
In [5]: var('m')
Out[5]: m
```

Without any loss of generality, we set m to some specific value (this amounts simply to fixing some length scale):

```
In [6]: m = 12
```

Let us introduce the spacetime metric g and set its components in the coordinate frame associated with Weyl-Papapetrou coordinates:

In [7]:
$$g = M.lorentzian_metric('g')$$

$$g[0,0] = -exp(-2*m/r)$$

$$g[1,1] = exp(2*m/r-m^2*(1-y^2)/r^2)$$

$$g[2,2] = exp(2*m/r-m^2*(1-y^2)/r^2)*r^2/(1-y^2)$$

$$g[3,3] = exp(2*m/r)*r^2*(1-y^2)$$

In [8]: g[:]

The Levi-Civita connection ∇ associated with g:

Levi-Civita connection nabla $_g$ associated with the Lorentzian metric g on the 4-dimensional differentiable manifold M

As a check, we verify that the covariant derivative of g with respect to ∇ vanishes identically:

Out[10]: $\nabla_g g = 0$

Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with Weyl-Papapetrou coordinates:

```
In [11]: M.default_frame() is X.frame()
```

Out[11]: True

Out[12]:
$$\left(\mathcal{M}, \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial r}, \frac{\partial}{\partial y}, \frac{\partial}{\partial \phi}\right)\right)$$

Let us consider the first vector field of this frame:

Out[13]:
$$\frac{\partial}{\partial t}$$

In [14]: print(xi)

Vector field d/dt on the 4-dimensional differentiable manifold M

The 1-form associated to it by metric duality is

1-form xi_form on the 4-dimensional differentiable manifold M

Out[15]: $\xi = -e^{\left(-\frac{24}{r}\right)} dt$

Its covariant derivative is

Tensor field nabla_g(xi_form) of type (0,2) on the 4-dimensional differentiable manifold M

Out[16]: $\nabla_{g} \underline{\xi} = -\frac{12 e^{\left(-\frac{24}{r}\right)}}{r^{2}} dt \otimes dr + \frac{12 e^{\left(-\frac{24}{r}\right)}}{r^{2}} dr \otimes dt$

Let us check that the Killing equation is satisfied:

In [17]: nab_xi.symmetrize().display()

Out[17]: 0

Equivalently, we check that the Lie derivative of the metric along ξ vanishes:

In [18]: g.lie_der(xi).display()

Out[18]: 0

Thank to Killing equation, $\nabla_g \underline{\xi}$ is antisymmetric. We may therefore define a 2-form by $F:=-\nabla_g \xi$. Here we enforce the antisymmetry by calling the function antisymmetrize () on nab_xi:

In [19]: F = - nab_xi.antisymmetrize()
F.set_name('F')
print(F)
F.display()

2-form F on the 4-dimensional differentiable manifold M

Out[19]: $F = \frac{12 e^{\left(-\frac{24}{r}\right)}}{r^2} dt \wedge dr$

We check that

In [20]: F == - nab_xi

Out[20]: True

The squared norm of the Killing vector is

```
In [21]: lamb = - g(xi,xi)
lamb.set_name('lambda', r'\lambda')
print(lamb)
lamb.display()
```

Scalar field lambda on the 4-dimensional differentiable manifold M

Out[21]:
$$\lambda$$
: \mathcal{M} $\longrightarrow \mathbb{R}$
$$(t, r, y, \phi) \longmapsto e^{\left(-\frac{24}{r}\right)}$$

Instead of invoking $g(\xi, \xi)$, we could have evaluated λ by means of the 1-form $\underline{\xi}$ acting on the vector field ξ :

Out[22]: True

or we could have used index notation in the form $\lambda = -\xi_a \xi^a$:

Out[23]: True

Curvature

The Riemann curvature tensor associated with g is

Tensor field $\operatorname{Riem}(g)$ of type (1,3) on the 4-dimensional differentiable manifold M

The component $R^0_{\ 101} = R^t_{\ rtr}$ is

Out[25]:
$$\frac{24 (r^2 - 72 y^2 - 12 r + 72)}{r^5}$$

while the component $R^2_{\ 323}=R^y_{\ \phi v\phi}$ is

Out[26]: 24
$$\frac{\left(72 y^{4} e^{\left(\frac{144}{r^{2}}\right)} - \left(r^{2} - 12 r + 144\right) y^{2} e^{\left(\frac{144}{r^{2}}\right)} + \left(r^{2} - 12 r + 72\right) e^{\left(\frac{144}{r^{2}}\right)}\right) e^{\left(-\frac{144}{r^{2}}\right)}}{r^{3}}$$

All the non-vanishing components of the Riemann tensor, taking into account the antisymmetry on the last two indices:

$$\begin{array}{lcl} $$ \mathbf{Sold}[1]_{\mathbf{M}}(x,t), r,t,t,r}^{(t,t)} $$ \end{array}{lcl} \mathbf{R}(g,t)_{\mathbf{M}}(x,t), r,t,t,r}^{(t,t)} $$ \end{array}{lcl} $$ \end{array}{lcl}$$

The Ricci tensor:

```
In [28]: Ric = g.ricci()
print(Ric)
```

Field of symmetric bilinear forms $\operatorname{Ric}(g)$ on the 4-dimensional different iable manifold M

Let us check that the Curzon-Chazy metric is a solution of the vacuum Einstein equation:

In [29]: Ric.display()

Out[29]: Ric (g) = 0

The Weyl conformal curvature tensor is

Tensor field C(g) of type (1,3) on the 4-dimensional differentiable man ifold \mathbf{M}

Let us exhibit two of its components C^0_{123} and C^0_{101} :

In [31]: C[0,1,2,3]

Out[31]: 0

In [32]: C[0,1,0,1]

Out[32]: $\frac{24 (r^2 - 72 y^2 - 12 r + 72)}{r^5}$

To form the Mars-Simon tensor, we need the fully covariant (type-(0,4) tensor) form of the Weyl tensor (i.e. $C_{\alpha\beta\mu\nu}=g_{\alpha\sigma}C^{\sigma}_{\ \beta\mu\nu}$); we get it by lowering the first index with the metric:

In [33]: Cd = C.down(g)
print(Cd)

Tensor field of type (0,4) on the 4-dimensional differentiable manifold M

The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the antisymmetry on the last two indices (position 2 and 3, the first index being at position 0):

In [34]: Cd.symmetries()

no symmetry; antisymmetry: (2, 3)

Actually, Cd is also antisymmetric with respect to the first two indices (positions 0 and 1), as we can check:

In [35]: Cd == Cd.antisymmetrize(0,1)

Out[35]: True

To take this symmetry into account explicitely, we set

```
In [36]: Cd = Cd.antisymmetrize(0,1)
```

Hence we have now

```
In [37]: Cd.symmetries()
no symmetry; antisymmetries: [(0, 1), (2, 3)]
```

Simon-Mars tensor

The Simon-Mars tensor with respect to the Killing vector ξ is a rank-3 tensor introduced by Marc Mars in 1999 (Class. Quantum Grav. 16, 2507). It has the remarkable property to vanish identically if, and only if, the spacetime (\mathcal{M}, g) is locally isometric to a Kerr spacetime.

Let us evaluate the Simon-Mars tensor by following the formulas given in Mars' article. The starting point is the self-dual complex 2-form associated with the Killing 2-form F, i.e. the object $\mathcal{F} := F + i * F$, where * F is the Hodge dual of F:

```
In [38]: FF = F + I * F.hodge_dual(g)
FF.set_name('FF', r'\mathcal{F}')
print(FF) ; FF.display()
```

2-form FF on the 4-dimensional differentiable manifold M

Out[38]:
$$\mathcal{F} = \frac{12 e^{\left(-\frac{24}{r}\right)}}{r^2} dt \wedge dr - 12i dy \wedge d\phi$$

Let us check that \mathcal{F} is self-dual, i.e. that it obeys $^*\mathcal{F} = -i\mathcal{F}$:

```
In [39]: FF.hodge_dual(g) == - I * FF
```

Out[39]: True

Let us form the right self-dual of the Weyl tensor as follows

$$C_{\alpha\beta\mu\nu} = C_{\alpha\beta\mu\nu} + \frac{i}{2} \epsilon^{\rho\sigma}_{\ \mu\nu} C_{\alpha\beta\rho\sigma}$$

where $\epsilon^{\rho\sigma}_{\mu\nu}$ is associated to the Levi-Civita tensor $\epsilon_{\rho\sigma\mu\nu}$ and is obtained by

```
In [40]: eps = g.volume_form(2) # 2 = the first 2 indices are contravariant
    print(eps)
    eps.symmetries()
```

Tensor field of type (2,2) on the 4-dimensional differentiable manifold M no symmetry; antisymmetries: [(0, 1), (2, 3)]

The right self-dual Weyl tensor is then:

```
In [41]: CC = Cd + I/2*( eps['^rs_..']*Cd['_..rs'] )
    CC.set_name('CC', r'\mathcal{C}'); print(CC)
```

Tensor field CC of type (0,4) on the 4-dimensional differentiable manifold M

In [42]: CC.symmetries()

no symmetry; antisymmetries: [(0, 1), (2, 3)]

In [43]: CC[0,1,2,3]

Out[43]: $\frac{24i r^2 - 1728i y^2 - 288i r + 1728i}{r^3}$

The Ernst 1-form $\sigma_{\alpha}=2\mathcal{F}_{\mu\alpha}\,\xi^{\mu}$ (0 = contraction on the first index of \mathcal{F}):

In [44]:
$$sigma = 2*FF.contract(0, xi)$$

Instead of invoking the function contract (), we could have used the index notation to denote the contraction:

In [45]: $sigma == 2*(FF['ma']*xi['^m'])$

Out[45]: True

In [46]: sigma.set_name('sigma', r'\sigma')
print(sigma); sigma.display()

1-form sigma on the 4-dimensional differentiable manifold M

Out[46]: $\sigma = \frac{24 e^{\left(-\frac{24}{r}\right)}}{r^2} dr$

The symmetric bilinear form $\gamma = \lambda g + \xi \otimes \xi$:

In [47]: gamma = lamb*g + xi_form * xi_form
gamma.set_name('gamma', r'\gamma')
print(gamma); gamma.display()

Field of symmetric bilinear forms gamma on the 4-dimensional differentiable manifold ${\tt M}$

Out[47]:

$$\gamma = e^{\left(\frac{144 \, y^2}{r^2} - \frac{144}{r^2}\right)} dr \otimes dr + \left(-\frac{r^2 e^{\left(\frac{144 \, y^2}{r^2}\right)}}{y^2 e^{\left(\frac{144}{r^2}\right)} - e^{\left(\frac{144}{r^2}\right)}}\right) dy \otimes dy + \left(-r^2 y^2 + r^2\right) d\phi$$

$$\otimes d\phi$$

Final computation leading to the Simon-Mars tensor:

The first part of the Simon-Mars tensor is

$$S_{\alpha\beta\gamma}^{(1)} = 4C_{\mu\alpha\nu\beta} \, \xi^{\mu} \, \xi^{\nu} \, \sigma_{\gamma}$$

In [48]: S1 = 4*(CC.contract(0,xi).contract(1,xi)) * sigma
print(S1)

Tensor field of type (0,3) on the 4-dimensional differentiable manifold M

The second part is the tensor

$$S_{\alpha\beta\gamma}^{(2)} = -\gamma_{\alpha\beta} \, C_{\rho\gamma\mu\nu} \, \xi^{\rho} \, \mathcal{F}^{\mu\nu}$$

which we compute by using the index notation to denote the contractions:

Tensor field of type (0,3) on the 4-dimensional differentiable manifold $\ensuremath{\mathsf{M}}$

```
In [50]: S2.symmetries()
```

symmetry: (0, 1); no antisymmetry

The Mars-Simon tensor with respect to ξ is obtained by antisymmetrizing $S^{(1)}$ and $S^{(2)}$ on their last two indices and adding them:

$$S_{\alpha\beta\gamma} = S_{\alpha[\beta\gamma]}^{(1)} + S_{\alpha[\beta\gamma]}^{(2)}$$

We use the index notation for the antisymmetrization:

An equivalent writing would have been (the last two indices being in position 1 and 2):

```
In [52]: # S1A = S1.antisymmetrize(1,2)
# S2A = S2.antisymmetrize(1,2)
```

The Simon-Mars tensor is

Tensor field S of type (0,3) on the 4-dimensional differentiable manifold M

no symmetry; antisymmetry: (1, 2)

$$S_{rry} = \frac{41472 \, ye^{\left(-\frac{48}{r}\right)}}{r^{6}}$$

$$S_{ryr} = -\frac{41472 \, ye^{\left(-\frac{48}{r}\right)}}{r^{6}}$$

$$S_{yry} = -\frac{41472 \, e^{\left(-\frac{48}{r}\right)}}{r^{5}}$$

$$S_{yyr} = \frac{41472 \, e^{\left(-\frac{48}{r}\right)}}{r^{5}}$$

$$S_{\phi r \phi} = \frac{41472 \left(y^{4} e^{\left(\frac{144}{r^{2}}\right)} - 2 \, y^{2} e^{\left(\frac{144}{r^{2}}\right)} + e^{\left(\frac{144}{r^{2}}\right)}\right) e^{\left(-\frac{144}{r^{2}} - \frac{48}{r}\right)}}{r^{5}}$$

$$S_{\phi y \phi} = -\frac{41472 \left(y^{3} e^{\left(\frac{144}{r^{2}}\right)} - ye^{\left(\frac{144}{r^{2}}\right)}\right) e^{\left(-\frac{144}{r^{2}} - \frac{48}{r}\right)}}{r^{4}}$$

$$S_{\phi \phi r} = -\frac{41472 \left(y^{4} e^{\left(\frac{144}{r^{2}}\right)} - 2 \, y^{2} e^{\left(\frac{144}{r^{2}}\right)} + e^{\left(\frac{144}{r^{2}}\right)}\right) e^{\left(-\frac{144}{r^{2}} - \frac{48}{r}\right)}}{r^{5}}$$

$$S_{\phi \phi y} = \frac{41472 \left(y^{3} e^{\left(\frac{144}{r^{2}}\right)} - ye^{\left(\frac{144}{r^{2}}\right)}\right) e^{\left(-\frac{144}{r^{2}} - \frac{48}{r}\right)}}{r^{5}}$$

Hence the Simon-Mars tensor is not zero: the Curzon-Chazy spacetime is not locally isomorphic to the Kerr spacetime.

Computation of the Simon-Mars scalars

First we form the "square" of the Simon-Mars tensor:

Tensor field of type (3,0) on the 4-dimensional differentiable manifold $\ensuremath{\mathsf{M}}$

Scalar field on the 4-dimensional differentiable manifold M

Out[58]:
$$\mathcal{M} \longrightarrow \mathbb{R}$$

$$(t, r, y, \phi) \longmapsto -\frac{6879707136 \left(y^2 e^{\left(\frac{432}{r^2}\right)} - e^{\left(\frac{432}{r^2}\right)}\right) e^{\left(-\frac{432}{r^2} - \frac{168}{r}\right)}}{r^{14}}$$

Then we take the real and imaginary part of this compex scalar field. Because this spacetime is spherically symmetric, we expect that the imaginary part vanishes.

Out[60]:
$$-\frac{6879707136 y^2 e^{\left(-\frac{432 y^2}{r^2} - \frac{168}{r} + \frac{432}{r^2}\right)}}{r^{14}} + \frac{6879707136 e^{\left(-\frac{432 y^2}{r^2} - \frac{168}{r} + \frac{432}{r^2}\right)}}{r^{14}}$$

Out[61]: 0

Furthermore we scale those scalars by the ADM mass of the Curzon-Chazy spacetime, which corresponds to m:

In [62]:
$$SS1ad = m^6*SS1$$
; $SS1ad$

Out[62]:

$$-\frac{20542695432781824 y^{2} e^{\left(-\frac{432 y^{2}}{r^{2}} - \frac{168}{r} + \frac{432}{r^{2}}\right)}}{r^{14}} + \frac{20542695432781824 e^{\left(-\frac{432 y^{2}}{r^{2}} - \frac{168}{r} + \frac{432}{r^{2}}\right)}}{r^{14}}$$

And we take the log of this quantity

Out[63]:
$$\log \left(-\frac{20542695432781824 \, y^2 e^{\left(-\frac{432 \, y^2}{r^2} - \frac{168}{r} + \frac{432}{r^2}\right)}}{r^{14}} + \frac{20542695432781824 \, e^{\left(-\frac{432 \, y^2}{r^2} - \frac{168}{r} + \frac{432}{r^2}\right)}}{r^{14}} \right)$$

Then we plot the value of this quantity as a function of $\rho=x=r\sqrt{1-y^2}$ and z=ry, thereby producing Figure 10 of arXiv:1412.6542:

```
In [64]:
            var('x z')
            lss1xzad = lss1ad.subs(r=sqrt(x^2+z^2)),
                                           y = z/sqrt(x^2+z^2)).simplify_full()
            lSS1xzad
Out[64]:
                                                 432 z^2
                                               x^4+2 x^2z^2+z^4
                         20542695432781824 x<sup>2</sup>
            log
                 \overline{x^{16} + 8\ x^{14}z^2 + 28\ x^{12}z^4 + 56\ x^{10}z^6 + 70\ x^8z^8 + 56\ x^6z^{10} + 28\ x^4z^{12} + 8\ x^2z^{14} + z^{16}}
                                          log(10)
In [65]: S1CC1 = contour_plot(lSS1xzad, (x, -20, 20), (z, -20, 20), plot_points=200,
                                        fill=False, cmap='hsv', linewidths=1,
                                        contours=(-14,-13.5,-13,-12.5,-12,-11.5,-11,
                                                     -10.5, -10, -9.5, -9, -8.5, -8, -7.5, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, -2.5,
                                                     -2, -1.5, -1, -0.5,0),
                                        colorbar=True, colorbar_spacing='uniform',
                                        colorbar_format='%1.f'
                                        axes_labels=(r"$\rho\,\left[M\right]$",
                                                          r"$z\,\left[M\right]$"),
                                        fontsize=14)
            S1CC1
Out[65]:
                                                                                                      0
                   20
                                                                                                       -2
                                                                                                      -3
                   10
                                                                                                      -4
                                                                                                       -6
                     0
                                                                                                      -8
                                                                                                      -9
                  -10
                                                                                                      -10
                                                                                                      -12
                                                                                                      -14
                  -20
                                                         0
                       -20
                                       -10
                                                                         10
                                                                                          20
                                                      \rho[M]
```

We also a viewer for 3D plots (use 'threejs' or 'jmol' for interactive 3D graphics):

```
In [66]: viewer3D = 'tachyon' # must be 'threejs', 'jmol', 'tachyon' or None (de fault)
```

Out[67]:

