SageManifolds 1.0

Simon-Mars tensor in Curzon-Chazy
spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 1.0, as included in
SageMath 7.5) in computations regarding the Curzon-Chazy spacetime. It implements the
computation of the Simon-Mars tensor of Curzon-Chazy spacetime used in the article
arXiv:1412.6542.

Click here to download the worksheet file (ipynb format). To run it, you must start SageMath with the
Jupyter notebook, via the command sage -n jupyter

NB: a version of SageMath at least equal to 7.5 is required to run this worksheet:

In [1]: version()

Qut[1l]: 'SageMath version 7.5.1, Release Date: 2017-01-15'

First we set up the notebook to display mathematical objects using LaTeX rendering:

In [2]: %display latex

Spacetime manifold

We declare the Curzon-Chazy spacetime as a 4-dimensional manifold:

In [3]: M = Manifold(4, 'M', latex _name=r'\mathcal{M}")
print (M)

4-dimensional differentiable manifold M

We introduce the coordinates (z, 1, y, ¢b) with y related to the standard Weyl-Papapetrou
coordinates (¢, 7,0, ¢) by y = cos 6.

In [4]: X.<t,r,y,ph> = M.chart(r't r:(0,+00) y:(-1,1) ph:(0,2*pi):\phi")
print(X) ; X

Chart (M, (t, r, y, ph))
Outlals (M, (5, 1y, ¢))

Metric tensor

We declare the only parameter of the Curzon-Chazy spacetime, which is the mass m as a symbolic
variable:

In [5]: var('m')

Out[5]: 4y

Without any loss of generality, we set m to some specific value (this amounts simply to fixing some
length scale):

In [6]: m = 12

In [7]:

In [8]:
Out[8]:

In [9]:

In [10]:
Out[10]:

In [11]:
Out[11]:

In [12]:
Out[12]:

In [13]:
Out[13]:

SageManifolds 1.0

Let us introduce the spacetime metric g and set its components in the coordinate frame associated
with Weyl-Papapetrou coordinates:

g = M.lorentzian metric('g"')

gl0,0] = - exp(-2*m/r)
gl[l,1] = exp(2*m/r-m"2*(1-y~2)/r"2)
gl2,2] = exp(2*m/r-m™"2*(1-y~2)/r"2)*r"2/(1-y"2)
gl[3,3] = exp(2*m/r)*r"2*(1-y~2)
gl:1]
_e(_z_j) 0 0 0
V2—
<1m1& 1)+1T>
0 e 0 0
144(y2—1)
==
r-e
0 0 -t — 0
0 0 0 —(yz—l)rzez—r4

The Levi-Civita connection V associated with g:

nab = g.connection() ; print(nab)

Levi-Civita connection nabla g associated with the Lorentzian metric g
on the 4-dimensional differentiable manifold M

As a check, we verify that the covariant derivative of g with respect to V vanishes identically:

nab(g).display()
Veg=0

Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with
Weyl-Papapetrou coordinates:

M.default frame() is X.frame()

True

X.frame()
0 0 0 0
(4G i)
ot or dy d¢

Let us consider the first vector field of this frame:

xi = X.frame()[0] ; xi

0

ot

In [14]:

In [15]:

Out[15]:

In [16]:

Out[16]:

In [17]:
Out[17]:

In [18]:
Out[18]:

In [19]:

Out[19]:

In [20]:
Out[20]:

SageManifolds 1.0

print(xi)

Vector field d/dt on the 4-dimensional differentiable manifold M

The 1-form associated to it by metric duality is

xi form = xi.down(g)

xi form.set name('xi form', r'\underline{\xi}"')

print(xi form) ; xi form.display()

1-form xi_form on the 4-dimensional differentiable manifold M

2

SR

= —e(=F)dr

Its covariant derivative is

nab xi = nab(xi_ form)
print(nab_xi) ; nab_xi.display()

Tensor field nabla g(xi_form) of type (0,2) on the 4-dimensional differ
entiable manifold M

12-%) 12-%)
— e ®dr+ ———dr®d
r r

V=

Let us check that the Killing equation is satisfied:

nab xi.symmetrize().display()

0

Equivalently, we check that the Lie derivative of the metric along £ vanishes:

g.lie der(xi).display()
0

Thank to Killing equation, V ¢£ is antisymmetric. We may therefore define a 2-form by F' := —V &

Here we enforce the antisymmetry by calling the function antisymmetrize () onnab_xi:

F = - nab xi.antisymmetrize()
F.set name('F")
print(F)

F.display()

2-form F on the 4-dimensional differentiable manifold M

> dr A dr

r
We check that

== - nab_xi

True

The squared norm of the Killing vector is

In [21]:

Out[21]:

In [22]:
Out[22]:

In [23]:
Out[23]:

In [24]:

In [25]:
Out[25]:

In [26]:
Out[26]:

In [27]:
Out[27]:

SageManifolds 1.0

lamb = - g(xi,xi)
lamb.set name('lambda', r'\lambda')
print(lamb)

lamb.display ()
Scalar field lambda on the 4-dimensional differentiable manifold M
A M — R
(-7)
(t’r’y’¢) — e 0

Instead of invoking g(&, &), we could have evaluated A by means of the 1-form & acting on the vector
field &:

lamb == - xi form(xi)

True

or we could have used index notation in the form 4 = —&,&%:
lamb == - (xi_form[' a']*xi['~a']l)

True

Curvature

The Riemann curvature tensor associated with g is

Riem = g.riemann()

print(Riem)

Tensor field Riem(g) of type (1,3) on the 4-dimensional differentiable
manifold M

The component R,), = R’ is

Riem[0,1,0,1]
24 (r* = 72y* — 12r + 72)

7

while the component R2323 = Ry¢y¢ is

Riem[2,3,2,3]
24

144

2
(72y4e<%) — (P =12r+ 144)y26(r_2) + (P =127+ 72)e<1§)>e<‘ “-)

73

All the non-vanishing components of the Riemann tensor, taking into account the antisymmetry on the
last two indices:

Riem.display_comp(only nonredundant=True)

|\newcommand{\BoId}[1 {\mathbf{#1}}\begin{array}{Icl} \mathrm{Riem}\left(g\right)_{ \, r\, t\, r }*{\, t\

In [28]:

In [29]:
Out[29]:

In [30]:

In [31]:
Out[31]:

In [32]:
Out[32]:

In [33]:

In [34]:

In [35]:
Out[35]:

SageManifolds 1.0

The Ricci tensor:

Ric = g.ricci()
print(Ric)

Field of symmetric bilinear forms Ric(g) on the 4-dimensional different
iable manifold M

Let us check that the Curzon-Chazy metric is a solution of the vacuum Einstein equation:
Ric.display()

Ric(g) =0

The Weyl conformal curvature tensor is

C =g.weyl()

print(C)

Tensor field C(g) of type (1,3) on the 4-dimensional differentiable man
ifold M

Let us exhibit two of its components CO123 and C0101 :

cro,1,2,3]
0
c[o,1,0,1]

24 (r* =72y* = 12r +72)

7S

To form the Mars-Simon tensor, we need the fully covariant (type-(0,4) tensor) form of the Weyl tensor
(i.e. Copp = g(wC"ﬁW); we get it by lowering the first index with the metric:

Cd = C.down(g)
print(Cd)

Tensor field of type (0,4) on the 4-dimensional differentiable manifold
M

The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the
antisymmetry on the last two indices (position 2 and 3, the first index being at position 0):

Cd.symmetries()

no symmetry; antisymmetry: (2, 3)

Actually, Cd is also antisymmetric with respect to the first two indices (positions 0 and 1), as we can
check:

Cd == Cd.antisymmetrize(0,1)

True

To take this symmetry into account explicitely, we set

In [36]:

In [37]:

In [38]:

Out[38]:

In [39]:
Out[39]:

In [40]:

In [41]:

SageManifolds 1.0

Cd = Cd.antisymmetrize(0,1)
Hence we have now

Cd.symmetries()

no symmetry; antisymmetries: [(0, 1), (2, 3)]

Simon-Mars tensor

The Simon-Mars tensor with respect to the Killing vector £ is a rank-3 tensor introduced by Marc Mars
in 1999 (Class. Quantum Grav. 16. 2507). It has the remarkable property to vanish identically if, and
only if, the spacetime (M, g) is locally isometric to a Kerr spacetime.

Let us evaluate the Simon-Mars tensor by following the formulas given in Mars' article. The starting
point is the self-dual complex 2-form associated with the Killing 2-form F', i.e. the object
F := F + i *F, where *F is the Hodge dual of F:

FF = F + T * F.hodge dual(g)
FF.set name('FF', r'\mathcal{F}")
print(FF) ; FF.display()

2-form FF on the 4-dimensional differentiable manifold M

. 120-%)

s—dr Adr—12idy A d¢p

B
Let us check that F' is self-dual, i.e. that it obeys *F = —iF:

FF.hodge dual(g) == - I * FF

True
Let us form the right self-dual of the Weyl tensor as follows

Caﬁ;w = Copw + é’epiw Cappo
where €’ Gﬂ,, is associated to the Levi-Civita tensor €5y, and is obtained by

eps = g.volume form(2) # 2 = the first 2 indices are contravariant
print(eps)
eps.symmetries()

Tensor field of type (2,2) on the 4-dimensional differentiable manifold
M
no symmetry; antisymmetries: [(0, 1), (2, 3)]

The right self-dual Weyl tensor is then:

CC =Cd + I/2*%(eps['”rs_.."1*Cd[' ..rs'])
CC.set name('CC', r'\mathcal{C}') ; print(CC)

Tensor field CC of type (0,4) on the 4-dimensional differentiable manif
old M

SageManifolds 1.0

In [42]: CC.symmetries()

no symmetry; antisymmetries: [(0, 1), (2, 3)]

In [43]: CC[0,1,2,3]
Outl[43]: 24ir? — 1728iy* — 288ir + 1728i

73

The Ernst 1-form 6, = 2F 4 & (0 = contraction on the first index of F):
In [44]: sigma = 2*FF.contract(0, xi)

Instead of invoking the function contract (), we could have used the index notation to denote the
contraction:

In [45]: sigma == 2*(FF[' ma']*xi['"m"'])
Out[45]: True
In [46]: sigma.set name('sigma', r'\sigma')
print(sigma) ; sigma.display()
1-form sigma on the 4-dimensional differentiable manifold M
Out[46]: 246(—$)

c=———dr
2

The symmetric bilinear formy = A g+ £ ® &:

In [47]: gamma = lamb*g + xi form * xi form
gamma.set name('gamma', r'\gamma')
print(gamma) ; gamma.display()

Field of symmetric bilinear forms gamma on the 4-dimensional differenti
able manifold M

Out[47]: e 5 (14‘;22
y=e<r_2_r_2>dr®dr+ T _|vyedy+ (P +) dg
wel#) _ (%)
® d¢

Final computation leading to the Simon-Mars tensor:

The first part of the Simon-Mars tensor is
n _ U U
Saﬂy - 4C/mvﬁ 6 5 Oy
In [48]: S1 = 4*(CC.contract(0,xi).contract(1l,xi)) * sigma
print(S1)

Tensor field of type (0,3) on the 4-dimensional differentiable manifold
M

In [49]:

In [50]:

In [51]:

In [52]:

In [53]:

SageManifolds 1.0

The second part is the tensor

2
S((zﬁ)r = ~Yap Coyw & F**

which we compute by using the index notation to denote the contractions:

FFuu FF.up(g)

xiCC CC[' .r..'I*xi['"r"]

S2 = gamma * (xiCC[' .mn']*FFuul['“mn'])
print(S2)

Tensor field of type (0,3) on the 4-dimensional differentiable manifold
M
S2.symmetries()

symmetry: (0, 1); no antisymmetry

The Mars-Simon tensor with respect to & is obtained by antisymmetrizing SM and S on their last
two indices and adding them:

— ¢ (@)

Sapr = Satpy + Sapn

We use the index notation for the antisymmetrization:

S1A
S2A

S1[' a[bc]']
S2[' albc]']

An equivalent writing would have been (the last two indices being in position 1 and 2):

SIA
S2A

Sl.antisymmetrize(1,2)
S2.antisymmetrize(1,2)

The Simon-Mars tensor is

S = S1A + S2A
S.set name('S"') ; print(S)
S.symmetries()

Tensor field S of type (0,3) on the 4-dimensional differentiable manifo
1dM
no symmetry; antisymmetry: (1, 2)

In [54]:
Out[54]:

In [55]:
Out[55]:

SageManifolds 1.0

S.display()

41472 ye(~+) 41472 ye(~+)
s=22 r@dred - ——
r r

dr®dy ® dr

4

41472 ¢(-7) 41472 ¢(-7)

3 dy®dr®dy+—5d)’®dy®dr
r r
v2
s1a7a (el #) 2,2 #) 1 o8))ol5-)
’ 5 dop @ dr ® d¢p
"
2
41472 <y3e(lriz4) - ye(f‘%)>e(-)
- 7 dp ® dy ® dgp
r
41472 <y4e(%) - ZyZe(%> + e(%)>e<_ szyz—ﬁ)
) 5 dp ® do ® dr
r
s (2 o))
* 4 d¢ ® dp ® dy
.
S.display comp()
S _ 41472ye(_£)
rry = —
S5
Sryr = _%
Syry _aanel)
rS
e(_g)
Syy, = 2T
2
e (e)2)LL)
Syrs = rS
2
41472 <y3e<1§)—ye<l§>)e(_ sz' —£>
Sove = ~ —
‘.2
(wi%_zyzx%xx%))e(- 2)
Sepr = — —
2
s (! ‘f?>-ye<%>)e(-)
Sppy = -

Hence the Simon-Mars tensor is not zero: the Curzon-Chazy spacetime is not locally isomorphic to
the Kerr spacetime.

Computation of the Simon-Mars scalars

First we form the "square" of the Simon-Mars tensor:

SageManifolds 1.0

In [56]: Su = S.up(g)
print(Su)

Tensor field of type (3,0) on the 4-dimensional differentiable manifold
M

In [57]1: SS = S[' ijk'I*Su['~ijk"']
print(SS)

Scalar field on the 4-dimensional differentiable manifold M

In [58]: SS.display()
Out[58]: M — R

RO

(f,”,y’fﬁ) — - 7

In [59]: SSE=SS.expr()

Then we take the real and imaginary part of this compex scalar field. Because this spacetime is
spherically symmetric, we expect that the imaginary part vanishes.

In [60]: SS1 = real(SSE) ; SS1
Out[60]:

43252 168, 432

6879707136y2e(_r_2) esror07136el
B +
r14 r14

43252 168, 432)

In [61]: SS2 = imag(SSE) ; SS2
Out[61]:

Furthermore we scale those scalars by the ADM mass of the Curzon-Chazy spacetime, which
corresponds to m1:

In [62]: SSlad = m"6*SS1 ; SSlad
Out[62]:

20542695432781824y2e(‘7 T
}"14

4322 168 432)

(_fiﬁ_£§+iz>
, 20542695432781824 ¢\ "7 7
14

r

And we take the log of this quantity

In [63]: 1SSlad = log(SSlad,10) ; 1SSlad

0Ut[63] . (_432."2_§ ﬂ) (_432,"2_168 432)
1 _ 20542695432781824 y*e r? o + 20542695432781824 e r2 T2
Og rlé rlé
log(10)

Then we plot the value of this quantity as a functionof p = x = r4/1 — y2 and 7 = ry, thereby
producing Figure 10 of arXiv:1412.6542:

10

In [64]:

Out[64]:

In [65]:

Out[65]:

In [66]:

SageManifolds 1.0

var('x z")
1SS1xzad = 1SSlad.subs(r=sqrt(x"2+z"2),
y = z/sqrt(x”2+z72)) .simplify full()

1SS1xzad
__4m? s 4%
log 2054260543278 1824 22l P (2 e

x1048 x1472428 x12744+56 x10764+70 x878456 x0710428 x471248 x27144716

log(10)

S1CC1 = contour plot(lSSlxzad, (x,-20,20), (z,-20,20), plot points=200,

fill=False, cmap='hsv', linewidths=1,

contours=(-14,-13.5,-13,-12.5,-12,-11.5,-11,
-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,
-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,
-2,-1.5,-1,-0.5,0),

colorbar=True, colorbar_spacing='uniform',

colorbar format='%1.f"',

axes labels=(r"$\rho\,\left[M\right]$",

r'$z\,\left[M\right]l$"),
fontsize=14)
S1CC1

HENNNNENENEEE

zIM)

[TTT]

pM
We also a viewer for 3D plots (use 'threejs' or 'jmol"' for interactive 3D graphics):

viewer3D = 'tachyon' # must be 'threejs', 'jmol', 'tachyon' or None (de
fault)

11

SageManifolds 1.0

In [67]: plot3d(lSSlxzad, (x,0.12,20), (z,0.12,20), viewer=viewer3D,
aspect ratio=[1,1,0.05], plot points=100,
axes labels=['rho', 'z', 'log(beta)'])

Out[67]:

12

