Real projective plane \mathbb{RP}^2

This worksheet demonstrates a few capabilities of <u>SageManifolds</u> (version 1.0, as included in SageMath 7.5) in computations regarding the real projective plane.

Click <u>here</u> to download the worksheet file (ipynb format). To run it, you must start SageMath with the Jupyter notebook, via the command sage -n jupyter

NB: a version of SageMath at least equal to 7.5 is required to run this worksheet:

```
In [1]: version()
Out[1]: 'SageMath version 7.5, Release Date: 2017-01-11'
```

First we set up the notebook to display mathematical objects using LaTeX rendering:

```
In [2]: %display latex
```

We also define a viewer for 3D plots (use 'threejs' or 'jmol' for interactive 3D graphics):

```
In [3]: viewer3D = 'jmol' # must be 'threejs', 'jmol', 'tachyon' or None (defau
lt)
```

Constructing the manifold

We start by declaring the real projective plane as a 2-dimensional differentiable manifold:

```
In [4]: RP2 = Manifold(2, 'RP^2', r'\mathbb{RP}^2') ; RP2
Out[4]: RP<sup>2</sup>
```

Then we provide \mathbb{RP}^2 with some atlas. A minimal atlas on \mathbb{RP}^2 must have at least three charts. Such an atlas is easy to infer from the common interpretation of \mathbb{RP}^2 as the set of lines of \mathbb{R}^3 passing through the origin (x,y,z)=(0,0,0). Let U_1 be the subset of lines that are not contained in the plane z=0; this is an open set of \mathbb{RP}^2 , so that we declare it as:

```
In [5]: U1 = RP2.open\_subset('U_1'); U1
Out[5]: U_1
```

Any line in U_1 is uniquely determined by its intersection with the plane z=1. The Cartesian coordinates (x,y,1) of the intersection point lead to an obvious coordinate system (x_1,y_1) on U_1 by setting $(x_1,y_1)=(x,y)$:

```
In [6]: X1.<x1,y1> = U1.chart(); X1
Out[6]: (U_1,(x_1,y_1))
```

Note that since we have not specified any coordinate range in the arguments of chart (), the range of (x_1, y_1) is \mathbb{R}^2 .

Similarly, let U_2 be the set of lines through the origin of \mathbb{R}^3 that are not contained in the plane x=0. Any line in U_2 is uniquely determined by its intersection (1,y,z) with the plane x=1, leading to coordinates $(x_2,y_2)=(y,z)$ on U_2 :

```
In [7]: U2 = RP2.open_subset('U_2')
X2.<x2,y2> = U2.chart(); X2
```

Out[7]: $(U_2,(x_2,y_2))$

Finally, let U_3 be the set of lines through the origin of \mathbb{R}^3 that are not contained in the plane y=0. Any line in U_3 is uniquely determined by its intersection (x,1,z) with the plane y=1, leading to coordinates $(x_3,y_3)=(z,x)$ on U_3 :

```
In [8]: U3 = RP2.open_subset('U_3')
X3.<x3,y3> = U3.chart(); X3
```

Out[8]: $(U_3,(x_3,y_3))$

We declare that the union of the three (overlapping) open domains U_1 , U_2 and U_3 is \mathbb{RP}^2 :

```
In [9]: RP2.declare_union(U1.union(U2), U3)
U1.union(U2).union(U3)
```

Out[9]: \mathbb{RP}^2

At this stage, three open covers of \mathbb{RP}^2 have been constructed:

```
In [10]: RP2.open_covers()
```

$$\texttt{Out[10]:} \quad \left[\left[\mathbb{RP}^2 \right], \left[U_1 \cup U_2, U_3 \right], \left[U_1, U_2, U_3 \right] \right]$$

Finally, to fully specify the manifold \mathbb{RP}^2 , we give the transition maps between the various charts; the transition map between the charts $\mathsf{X1=}(U_1,(x_1,y_1))$ and $\mathsf{X2=}(U_2,(x_2,y_2))$ is defined on the set $U_{12}:=U_1\cap U_2$ of lines through the origin of \mathbb{R}^3 that are neither contained in the plane x=0 ($x_1=0$ in $x_2=0$ in $x_2=0$ in $x_2=0$):

Out[11]:
$$\begin{cases} x_{1} = x_{2} & \text{out[1]} \\ x_{2} & \text{out[1]} \\ x_{2} & \text{out[1]} \end{cases}$$

The inverse of this transition map is easily computed by Sage:

Out[12]:
$$\begin{cases} x_1 = \frac{1}{y_2} \\ y_1 = \frac{x_2}{y_2} \end{cases}$$

The transition map between the charts $X1=(U_1,(x_1,y_1))$ and $X3=(U_3,(x_3,y_3))$ is defined on the set $U_{13}:=U_1\cap U_3$ of lines through the origin of \mathbb{R}^3 that are neither contained in the plane y=0 ($y_1=0$ in U_1) nor contained in the plane z=0 ($x_3=0$ in $x_3=0$):

Out[13]:
$$\begin{cases} x_3 = \frac{1}{y_3} \\ y_3 = \frac{x_3}{y_3} \end{cases}$$

Out[14]:
$$\begin{cases} x_1 &=& \frac{y_3}{x_3} \\ y_1 &=& \frac{1}{x_3} \end{cases}$$

Finally, the transition map between the charts $X2=(U_2,(x_2,y_2))$ and $X3=(U_3,(x_3,y_3))$ is defined on the set $U_{23}:=U_2\cap U_3$ of lines through the origin of \mathbb{R}^3 that are neither contained in the plane y=0 ($x_2=0$ in U_2) nor contained in the plane x=0 ($y_3=0$ in U_3):

Out[15]:
$$\begin{cases} x_3 = \frac{y_2}{x_2} \\ y_3 = \frac{1}{x_3} \end{cases}$$

Out[16]:
$$\begin{cases} x_2 = \frac{1}{y_3} \\ y_2 = \frac{x_3}{y_3} \end{cases}$$

At this stage, the manifold \mathbb{RP}^2 is fully constructed. It has been provided with the following atlas:

Out[17]:
$$[(U_1,(x_1,y_1)),(U_2,(x_2,y_2)),(U_3,(x_3,y_3)),(U_{12},(x_1,y_1)),(U_{12},(x_2,y_2)),\\ (U_{13},(x_1,y_1)),(U_{13},(x_3,y_3)),(U_{23},(x_2,y_2)),(U_{23},(x_3,y_3))]$$

Note that, in addition to the three chart we have defined, the atlas comprises subcharts on the intersection domains U_{12} , U_{13} and U_{23} . These charts can be obtained by the method restrict():

```
In [18]: U12 = U1.intersection(U2)
U13 = U1.intersection(U3)
U23 = U2.intersection(U3)
X1.restrict(U12)

Out[18]: (U_{12},(x_1,y_1))

In [19]: X1.restrict(U12) is RP2.atlas()[3]

Out[19]: True
```

Non-orientability of \mathbb{RP}^2

It is well known that \mathbb{RP}^2 is not an orientable manifold. To illustrate this, let us make an attempt to construct a global non-vanishing 2-form ϵ on \mathbb{RP}^2 . If we succeed, this would provide a volume form and \mathbb{RP}^2 would be orientable. We start by declaring ϵ as a 2-form on \mathbb{RP}^2 :

```
In [20]: eps = RP2.diff_form(2, name='eps', latex_name=r'\epsilon')
print(eps)
```

2-form eps on the 2-dimensional differentiable manifold RP^2

We set the value of ϵ on domain U_1 to be $\mathrm{d}x_1 \wedge \mathrm{d}y_1$ by demanding that the component ϵ_{01} of ϵ with respect to coordinates (x_1,y_1) is one, as follows:

If we ask for the expression of ϵ in terms of the coframe (dx_2, dy_2) associated with the chart X2 on $U_{12} = U_1 \cap U_2$, we get

```
In [23]: eps.display(X2.frame().restrict(U12), chart=X2.restrict(U12))  
Out[23]: \epsilon = \frac{1}{y_2^3} dx_2 \wedge dy_2
```

Now, the complement of U_{12} in U_2 is defined by $y_2=0$. The above expression shows that it is not possible to extend smoothly ϵ to the whole domain U_2 . We conclude that starting from $\mathrm{d}x_1 \wedge \mathrm{d}y_1$ on U_1 , it is not possible to get a regular non-vanishing 2-form on \mathbb{RP}^2 . This of course follows from the fact that \mathbb{RP}^2 is not orientable.

Steiner map (Roman surface)

Let us first define \mathbb{R}^3 as a 3-dimensional manifold, with a single-chart atlas (Cartesian coordinates Y):

```
In [24]: R3 = Manifold(3, 'R^3', r'\mathbb{R}^3')
Y.<x,y,z> = R3.chart()
```

The Steiner map is a map $\mathbb{RP}^2 \to \mathbb{R}^3$ defined as follows:

In [25]:
$$\begin{array}{lll} \text{Phi} &=& \text{RP2.diff_map}(\text{R3, } \{(\text{X1,Y}): [y1/(1+x1^2+y1^2), \ x1/(1+x1^2+y1^2), \ x1/(1+x1^2+y1^2), \ x1/(1+x1^2+y1^2), \ x2/(1+x1^2+y1^2), \ x2/(1+x2^2+y2^2), \ x2/(1+x2^2+y2^2), \ x2/(1+x2^2+y2^2), \ x3/(1+x3^2+y3^2), \$$

Out[25]:
$$\Phi$$
: $\mathbb{RP}^2 \longrightarrow \mathbb{R}^3$
on U_1 : $(x_1, y_1) \longmapsto (x, y, z) = \left(\frac{y_1}{x_1^2 + y_1^2 + 1}, \frac{x_1}{x_1^2 + y_1^2 + 1}, \frac{x_1 y_1}{x_1^2 + y_1^2 + 1}\right)$
on U_2 : $(x_2, y_2) \longmapsto (x, y, z) = \left(\frac{x_2 y_2}{x_2^2 + y_2^2 + 1}, \frac{y_2}{x_2^2 + y_2^2 + 1}, \frac{x_2}{x_2^2 + y_2^2 + 1}\right)$
on U_3 : $(x_3, y_3) \longmapsto (x, y, z) = \left(\frac{x_3}{x_3^2 + y_3^2 + 1}, \frac{x_3 y_3}{x_3^2 + y_3^2 + 1}, \frac{y_3}{x_3^2 + y_3^2 + 1}\right)$

 Φ is a topological immersion of \mathbb{RP}^2 into \mathbb{R}^3 , but it is not a smooth immersion (contrary to the Apéry map below): its differential is not injective at $(x_1,y_1)=(0,1)$ and $(x_1,y_1)=(1,0)$. The image of Φ is a self-intersecting surface of \mathbb{R}^3 , called the **Roman surface**:

SageManifolds 1.0

In [28]: show(gX2, viewer=viewer3D)

In [29]: show(gX3, viewer=viewer3D)

In [30]: show(gX1+gX2+gX3, viewer=viewer3D)

Apéry map (Boy surface)

The Apéry map [Apéry, Adv. Math. 61, 185 (1986)] is a smooth immersion $\Psi: \mathbb{RP}^2 \to \mathbb{R}^3$. In terms of the charts X1, X2, X3 introduced above, it is defined as follows:

In [31]:
$$fx = ((2*x^2-y^2-z^2)*(x^2+y^2+z^2)+2*y*z*(y^2-z^2)+z*x*(x^2-z^2)+x*y*(y^2-z^2))/2 ; fx$$

Out[31]:

$$\frac{1}{2}(y^2 - z^2)xy + \frac{1}{2}(x^2 - z^2)xz + (y^2 - z^2)yz + \frac{1}{2}$$
$$(2x^2 - y^2 - z^2)(x^2 + y^2 + z^2)$$

In [32]:
$$fy = sqrt(3)/2*((y^2-z^2)*(x^2+y^2+z^2)+z*x*(z^2-x^2)+x*y*(y^2-x^2)) ;$$
 fy

Out[32]:
$$-\frac{1}{2}\sqrt{3}((x^2-y^2)xy+(x^2-z^2)xz-(x^2+y^2+z^2)(y^2-z^2))$$

In [33]:
$$fz = (x+y+z)*((x+y+z)^3/4+(y-x)*(z-y)*(x-z))$$
; fz

Out[33]:
$$\frac{1}{4} ((x+y+z)^3 + 4(x-y)(x-z)(y-z))(x+y+z)$$

In [34]:
$$a = sqrt(1+x1^2+y1^2)$$

$$fx1 = fx.subs(x=x1/a, y=y1/a, z=1/a).simplify_full()$$

$$fy1 = fy.subs(x=x1/a, y=y1/a, z=1/a).simplify_full()$$

$$fz1 = fz.subs(x=x1/a, y=y1/a, z=1/a).simplify_full()$$

```
In [35]: a = sqrt(1+x2^2+y2^2)
                     fx2 = fx.subs(x=1/a, y=x2/a, z=y2/a).simplify_full()
                     fy2 = fy.subs(x=1/a, y=x2/a, z=y2/a).simplify_full()
                     fz2 = fz.subs(x=1/a, y=x2/a, z=y2/a).simplify_full()
In [36]: a = sqrt(1+x3^2+y3^2)
                     fx3 = fx.subs(x=y3/a, y=1/a, z=x3/a).simplify_full()
                     fy3 = fy.subs(x=y3/a, y=1/a, z=x3/a).simplify_full()
                     fz3 = fz.subs(x=y3/a, y=1/a, z=x3/a).simplify full()
In [37]: Psi = RP2.diff map(R3, \{(X1,Y): [fx1, fy1, fz1], (X2,Y): [fx2, fy2, fz2]\}
                                                                          (X3,Y): [fx3, fy3, fz3]}, name='Psi', latex nam
                     e=r'\Psi')
                    Psi.display()
Out[37]: \Psi: \mathbb{RP}^2 \longrightarrow \mathbb{R}^3
                     on U_1: (x_1, y_1) \longrightarrow
                                                                              = \left(\frac{2\,x_1^4 + (x_1 + 2)y_1^3 - y_1^4 + x_1^3 + (x_1^2 - 2)y_1^2 + x_1^2 - (x_1 + 2)y_1 - x_1 - 1}{2\,\left(x_1^4 + y_1^4 + 2\,\left(x_1^2 + 1\right)y_1^2 + 2\,x_1^2 + 1\right)},\right.
                                                                         \frac{x_1^4 + y_1^4 + 6\left(x_1^2 + 2\,x_1 + 1\right)y_1^2 + 8\,y_1^3 + 6\,x_1^2 + 4\left(2\,x_1^3 + 3\,x_1^2 + 3\,x_1\right)y_1 + 8\,x_1 + 1}{4\left(x_1^4 + y_1^4 + 2\left(x_1^2 + 1\right)y_1^2 + 2\,x_1^2 + 1\right)}\right)
                     on U_2: (x_2, y_2) \longrightarrow
                                                                         = \left(-\frac{x_2^4 + (2x_2+1)y_2^3 + y_2^4 - x_2^3 + (2x_2^2 + x_2 - 1)y_2^2 - x_2^2 - (2x_2^3 + 1)y_2 - 2}{2(x_2^4 + y_2^4 + 2(x_2^2 + 1)y_2^2 + 2x_2^2 + 1)},\right.
                                                                         \frac{x_2^4 + y_2^4 + 6\left(x_2^2 + 2\,x_2 + 1\right)y_2^2 + 8\,y_2^3 + 6\,x_2^2 + 4\left(2\,x_2^3 + 3\,x_2^2 + 3\,x_2\right)y_2 + 8\,x_2 + 1}{4\left(x_2^4 + y_2^4 + 2\left(x_2^2 + 1\right)y_2^2 + 2\,x_2^2 + 1\right)}\right)
                     on U_3: (x_3, y_3) \longrightarrow
                                                                       = \left(-\frac{x_3^4 - x_3 y_3^3 - 2 y_3^4 + 2 x_3^3 - (x_3^2 + 1) y_3^2 + 2 x_3^2 + (x_3^3 + x_3^2 - 1) y_3 - 2 x_3 + 1}{2 (x_3^4 + y_3^4 + 2 (x_3^2 + 1) y_3^2 + 2 x_3^2 + 1)},\right.
                                                                            -\frac{\sqrt{3}x_3^4 + (\sqrt{3}x_3 + \sqrt{3})y_3^3 + (\sqrt{3}x_3^2 - \sqrt{3})y_3^2 - (\sqrt{3}x_3^3 + \sqrt{3})y_3 - \sqrt{3}}{2(x_3^4 + y_3^4 + 2(x_3^2 + 1)y_3^2 + 2x_3^2 + 1)},
                                                                         \frac{x_3^4 + y_3^4 + 6(x_3^2 + 2x_3 + 1)y_3^2 + 8y_3^3 + 6x_3^2 + 4(2x_3^3 + 3x_3^2 + 3x_3)y_3 + 8x_3 + 1}{4(x_3^4 + y_3^4 + 2(x_3^2 + 1)y_3^2 + 2x_3^2 + 1)}
```

The image of Ψ is a self-intersecting surface of \mathbb{R}^3 , called the **Boy surface**, after Werner Boy (1879-1914):

```
In [38]: g1 = parametric_plot3d(Psi.expr(X1,Y), (x1,-10,10), (y1,-10,10), plot_p
    oints=[100,100])
    g2 = parametric_plot3d(Psi.expr(X2,Y), (x2,-10,10), (y2,-10,10), plot_p
    oints=[100,100])
    g3 = parametric_plot3d(Psi.expr(X3,Y), (x3,-10,10), (y3,-10,10), plot_p
    oints=[100,100])
    show(g1+g2+g3, viewer=viewer3D)
```


In [40]: show(gX1, viewer=viewer3D)

In [41]: show(gX2, viewer=viewer3D)

In [42]: show(gX3, viewer=viewer3D)

In [43]: show(gX1+gX2+gX3, viewer=viewer3D)

In []: