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Real projective plane RP?

This worksheet demonstrates a few capabilities of SageManifolds (version 1.0, as included in
SageMath 7.5) in computations regarding the real projective plane.

Click here to download the worksheet file (ipynb format). To run it, you must start SageMath with the
Jupyter notebook, via the command sage -n jupyter

NB: a version of SageMath at least equal to 7.5 is required to run this worksheet:

version()

'SageMath version 7.5, Release Date: 2017-01-11'

First we set up the notebook to display mathematical objects using LaTeX rendering:

%display latex
We also define a viewer for 3D plots (use 'threejs' or 'jmol"' for interactive 3D graphics):

viewer3D = 'jmol' # must be 'threejs', 'jmol', 'tachyon' or None (defau
lt)

Constructing the manifold

We start by declaring the real projective plane as a 2-dimensional differentiable manifold:

RP2 = Manifold(2, 'RP"2', r'\mathbb{RP}~2') ; RP2

RP?

Then we provide RIP? with some atlas. A minimal atlas on R[> must have at least three charts.
Such an atlas is easy to infer from the common interpretation of RP? as the set of lines of R>
passing through the origin (x, y, z) = (0, 0, 0). Let U be the subset of lines that are not contained
in the plane z = 0; this is an open set of IR[F"Z, so that we declare it as:

Ul = RP2.open subset('U 1") ; Ul

Ui

Any line in U7 is uniquely determined by its intersection with the plane z = 1. The Cartesian
coordinates (X, y, 1) of the intersection point lead to an obvious coordinate system (X, y;) on U

by setting (x1, y1) = (x,y):

X1.<x1,yl> = Ul.chart() ; X1

(U1, (x1,¥1))
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Note that since we have not specified any coordinate range in the arguments of chart (), the range
of (x1,¥y1)is R2.

Similarly, let U» be the set of lines through the origin of R? that are not contained in the plane
x = 0. Any line in Uy is uniquely determined by its intersection (1, y, z) with the plane x = 1,
leading to coordinates (X2, ¥2) = (¥, z) on Us:

U2 = RP2.open subset('U 2")
X2.<x2,y2> = U2.chart() ; X2

(Uz, (x2,¥2))

HmWJaUgMHESHMHmsmmwhmem@nmR3mmammnwmmmdmmeMwey=0.
Any line in U3 is uniquely determined by its intersection (x, 1, z) with the plane y = 1, leading to
coordinates (x3,y3) = (z,x) on Us:

U3 = RP2.open subset('U 3')
X3.<x3,y3> = U3.chart() ; X3

(U3, (x3,¥3))

We declare that the union of the three (overlapping) open domains Uy, U; and Us is RP?:

RP2.declare union(Ul.union(U2), U3)
Ul.union(U2).union(U3)

RP?
At this stage, three open covers of RP? have been constructed:

RP2.open covers()

[[RP]., (Ui U Us, U, [Uy, Us, Us]]

Finally, to fully specify the manifold RP?, we give the transition maps between the various charts; the
transition map between the charts X1=(U1, (x1, y1)) and X2=(U3, (x2, ¥2)) is defined on the set
Uiy := U; N U, of lines through the origin of R3 that are neither contained in the planex = 0
(x; = 0in Uy}) nor contained in the plane z = 0 (y, = 0in Uy):

X1 to X2 = Xl.transition map(X2, (yl/x1, 1/x1), intersection name='U {1
2},

)
X1 to X2.display()

pas
X1
1

X

restrictionsl= x1!=0, restrictions2= y2!=0

X2 =

»

The inverse of this transition map is easily computed by Sage:

X2 to X1 = X1 to X2.inverse()
X2 to Xl.display()

1

X = —
1 Y2
_ X

no o= 3
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The transition map between the charts X1=(U1, (x1, ¥1)) and X3=(U3, (X3, ¥3)) is defined on the
set U1z := U; N Uj of lines through the origin of R3 that are neither contained in the planey = 0
(v1 = 0in Uy}) nor contained in the plane z = 0 (x3 = 0 in Us):

X1 to X3 = Xl.transition map(X3, (1/yl, x1/yl), intersection name='U {1
3,

)
X1 to X3.display()

restrictionsl= yl!=0, restrictions2= x3!=0

1
Y1
X1
Y1

X3 =

Y3

X3_to X1 = X1_to _X3.inverse()
X3 to Xl.display()

Y3
X3
1
Y1 Iy

X1 =

Finally, the transition map between the charts X2=(U;, (x2, ¥2)) and X3=(U3, (x3, ¥3)) is defined
on the set Us3 := U, N Us of lines through the origin of R3 that are neither contained in the plane
y =0 (x = 0in Uy) nor contained in the plane x = 0 (y3 = 0in Us):

X2 to X3 = X2.transition map(X3, (y2/x2, 1/x2), intersection name='U {2
3}'!

)
X2 to X3.display()

restrictionsl= x2!=0, restrictions2= y3!=0

Y2
X
1

X

X3 =

y3

X3 to X2 = X2 to X3.inverse()
X3 to X2.display()

1
V3
X3
Y3

X2 =

2

At this stage, the manifold RP? is fully constructed. It has been provided with the following atlas:

RP2.atlas()

(U1, (x1,y1)) , (U2, (x2,¥2)) , (U3, (x3,¥3)) , (U12, (x1,y1)) , (U12, (x2,¥2)) »
(Ur3, (x1,¥1)) » (U13, (x3,3)) , (U3, (x2,¥2)) , (U23, (x3, y3))]

Note that, in addition to the three chart we have defined, the atlas comprises subcharts on the
intersection domains U1, Uj3 and Uy3. These charts can be obtained by the method
restrict ():
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Ul2 = Ul.intersection(U2)
Ul3 = Ul.intersection(U3)
U23 = U2.intersection(U3)

X1.restrict(U12)

(Ur2, (x1,¥1))

X1l.restrict(U12) is RP2.atlas()[3]

True

Non-orientability of R[P?

nswwkmwmmﬂwﬂSnmmommmbmmMMmemmmm&bumm%emaMmmm
construct a global non-vanishing 2-form € on RP?. If we succeed, this would provide a volume form
and RP? would be orientable. We start by declaring € as a 2-form on RP?:

eps = RP2.diff form(2, name='eps', latex name=r'\epsilon')
print(eps)

2-form eps on the 2-dimensional differentiable manifold RP"2

We set the value of € on domain U7 to be dx; A dy; by demanding that the component € of €
with respect to coordinates (X1, y1) is one, as follows:

el = X1.frame() ; el
(v (G 7))
1s E’E

eps[el,0,1] =1
eps.display(el)

€ =dx /\dyl

If we ask for the expression of € in terms of the coframe (dx,, dy;) associated with the chart X2 on
Uip = U; N U,, we get

eps.display(X2.frame().restrict(U12), chart=X2.restrict(U1l2))

1
—3dXQ A dy2
b

€ =
Now, the complement of Uy, in U, is defined by y, = 0. The above expression shows that it is not
possible to extend smoothly € to the whole domain U;. We conclude that starting from dx; A dy; on

U, itis not possible to get a regular non-vanishing 2-form on RP2. This of course follows from the
fact that RIP? is not orientable

Steiner map (Roman surface)

Let us first define R> as a 3-dimensional manifold, with a single-chart atlas (Cartesian coordinates
Y):

R3 = Manifold(3, 'R™3', r'\mathbb{R}"3")
Y.<X,y,z> = R3.chart()
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The Steiner map is a map RP? — R? defined as follows:

Phi = RP2.diff map(R3, {(X1,Y): [yl/(1+x172+y172), x1/(1+x172+y172), x1
*y1/(1+x17°2+y172) 1,

(X2,Y): [x2*y2/(1+x27°2+4y272), y2/(14x272+y2"2),
x2/ (1+x27°2+y27°2) 1],

(X3,Y): [x3/(1+x372+y372), x3*y3/(1+x3"2+y3"2),
y3/(1+x372+y372) 1},

name='Phi', latex name=r'\Phi')

Phi.display()

D : RP? R3

(x y Z) — < 1 X1 X1Y1 )

b 9
X24y2417 x24y2417 xi4yi+l

(x y Z) — < X2Y2 Y2 X2 )

9 9
X24y2417 x24y3+17 x24y3+1

(x y Z) - < X3 X3Y3 V3 )

b 9
X34y3+17 X2 434+17 x2 43+

onUj : (x1,y1)

onU; : (x2,y2)

Db

onUs: (x3,y3)

® is a topological immersion of RP? into R3, but it is not a smooth immersion (contrary to the Apéry
map below): its differential is not injective at (x1, y;) = (0, 1) and (x1, y1) = (1, 0). The image of
@ is a self-intersecting surface of [R3, called the Roman surface:

gl = parametric plot3d(Phi.expr(X1,Y), (x1,-10,10), (yl,-10,10), plot p
oints=[100,100])

g2 = parametric plot3d(Phi.expr(X2,Y), (x2,-10,10), (y2,-10,10), plot p
oints=[100,100])

g3 = parametric plot3d(Phi.expr(X3,Y), (x3,-10,10), (y3,-10,10), plot p
oints=[100,100])

show(gl+g2+g3, viewer=viewer3D)
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In [27]: g¢gX1 = Xl.plot(Y, mapping=Phi, max range=16, number values=24, plot poin
ts=100,

label axes=False)
gX2 = X2.plot(Y, mapping=Phi, max range=16, number values=24, plot poin
ts=100,

label axes=False, color='green')

gX3 = X3.plot(Y, mapping=Phi, max range=16, number values=24, plot poin
ts=100,

label axes=False, color='blue')
show(gX1l, viewer=viewer3D)
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In [28]: show(gX2, viewer=viewer3D)

0.46
000 ‘ 0,00
~
0.50 -0.46
In [29]: show(gX3, viewer=viewer3D)
0.50
000 ‘ 7 0.00
0.46 -0.50
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show(gX1+gX2+gX3, viewer=viewer3D)
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Apéry map (Boy surface)

The Apéry map [Apéry, Adv. Math. 61, 185 (1986)] is a smooth immersion ¥ : RP? — R3.1n
terms of the charts X1, X2, X3 introduced above, it is defined as follows:

X = ((2*¥X7"2-y"2-272) % (XN2+4Y"2+Z272) +2*y*z* (y"2-272) +Z2*X* (X"2-272) +x*y* (
y~2-z72))/2 ; fx
1

(v =)y + % (x> =2Z)xz+ (' =2 )yz+ 5

1
2 2

(2):2 —y: - 22)(x2 +? +zz)

fy = sqrt(3)/2*%((y"2-272)* (X 2+y"2+272) +2*x*(272-X"2) +x*y*(y*2-x"2)) ;
fy

1
-5 V(P =y )y + (=)= (P +y +2) (- 7))
fz = (x+y+z)*((X+y+2)"3/4+(y-x)*(z-y)*(x-2)) ; fz
1
7 ((x+y+z)3 +4(x—y)(x—z)(y—z))(x+y+z)

a = sqrt(1l+x17°2+y1~2)

fx1 = fx.subs(x=x1/a, y=yl/a, z=1/a).simplify full()
fyl = fy.subs(x=x1/a, y=yl/a, z=1/a).simplify full()
fzl = fz.subs(x=x1/a, y=yl/a, z=1/a).simplify full()
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a = sqrt(1l+x272+y2°2)

fx2
fy2
fz2

fx.subs(x=1/a, y=x2/a, z=y2/a).simplify full()
fy.subs(x=1/a, y=x2/a, z=y2/a).simplify full()
fz.subs(x=1/a, y=x2/a, z=y2/a).simplify full()

a = sqrt(1l+x372+y372)

fx3
fy3
fz3

Psi
]I

fx.subs(x=y3/a, y=1/a, z=x3/a).simplify full()
fy.subs(x=y3/a, y=1/a, z=x3/a).simplify full()
fz.subs(x=y3/a, y=1/a, z=x3/a).simplify full()

RP2.diff map(R3, {(X1,Y): [fx1l, fyl, fz1l], (X2,Y): [fx2, fy2, fz2

(X3,Y): [fx3, fy3, fz3]1}, name='Psi', latex nam

e=r'\Psi')
Psi.display()

¥ .
on U :

onU, :

on Us :

RP? — R}
(x1,y1) . y,2)
[ 22y v (6 =2) v ] O +2)y = -
- ( 2 (xf4yi42 (x24+1)y242 x2+1)
V3x3y =32y —3x1 3 =By +V/3x +/3x2 = 3x1+4/3
- 2 (P2 (x241)y2 42 x241)

]

B

xPHy 6 (3742 x1+1)y348 i +6 x24+4 (2 37 +3 3743 x1 )y +8 x1+1
4 (xfyt+2 (x24+1)y3+2 x2+1)
(x2,y2) +— (x,y,2)
_ _x§+(2 X+ =5 +(2 2+ —1)y3—x2— (2 x3+1)y, -2
- 2 (xfHi+2 (x2+1)y3+2 22 +1)

’

V3 =/3y3+v/3x3 +3y3+V3x — 3y~ V30 —V3y,

2 (xf 342 (x2+1)y3+2 x2+1)

B

x§+y‘2‘+6 (x22+2 x+1 )y%+8 y%+6 x§+4 (2 x§’+3 x§+3 xz)y2+8 X241
4 (xF+3+2 (2 +1)y3+2 x3+1)
(x3,y3) +— (. y,2)
_ _xé‘—x;yi—Z V42 05— (24+1)y242 X2+ (x3+x2 1) y;—2 x3+1
- 2 (xfH3+2 (x3+1)y3+2 x3+1)

b

_ V3x5+(V3x3+v3)y3+(V3x2=3) ¥~ (V3% +v3) y3—V3
2 (xf+y342 (x241)y242 x2+1)

’

xFH3+6 (3742 x3+1)y2+8 y3+6 x2+4 (2 x3+3 x3+3 x3)y3+8 x3+1
4 (x3+5+2 (x2+1)y3+2 x2+1)

The image of W is a self-intersecting surface of R3 , called the Boy surface, after Werner Boy

(1879-1914):
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In [38]: gl = parametric plot3d(Psi.expr(X1,Y), (x1,-10,10), (yl,-10,10), plot p
oints=[100,100])

g2 = parametric plot3d(Psi.expr(X2,Y), (x2,-10,10), (y2,-10,10), plot p
oints=[100,100])

g3 = parametric plot3d(Psi.expr(X3,Y), (x3,-10,10), (y3,-10,10), plot p
oints=[100,100])
show(gl+g2+g3, viewer=viewer3D)
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0.13 0.00
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In [39]: gX1 X1.plot(Y, mapping=Psi, number values=40, plot points=100, label
axes=False)
gX2 = X2.plot(Y, mapping=Psi, number values=40, plot points=100, label
axes=False,

color='green')
gX3 = X3.plot(Y, mapping=Psi, number values=40, plot points=100, label
axes=False,

color="'blue')

10
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In [40]: show(gXl, viewer=viewer3D)

0.97

1.04 -0.98

In [41]: show(gX2, viewer=viewer3D)

0.99

012 . 000

1.02 -0.99

11



In [42]: show(gX3, viewer=viewer3D)
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In [43]: show(gX1+gX2+gX3, viewer=viewer3D)
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