## Exploring black hole spacetimes with SageManifolds

## Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
92190 Meudon, France
http://luth.obspm.fr/~luthier/gourgoulhon/

### joint work with

Pablo Angulo, Michał Bejger, Marco Mancini, Travis Scrimshaw (SageManifolds)

Irina Aref'eva, Anastasia Golubtsova (gravity/gauge duality)

# 21st International Conference on General Relativity and Gravitation New York

10-15 July 2016



## SageMath in a few words

- SageMath (formerly Sage) is a free open-source mathematics software system [http://www.sagemath.org/]
- It is based on the Python programming language
- It can be
  - freely downloaded and installed on one's computer
  - used online by opening a (free) account on the SageMathCloud: https://cloud.sagemath.com/
- ullet William Stein (Univ. of Washington) created SageMath in 2005; since then,  $\sim\!100$  developers (mostly mathematicians) have joined the SageMath team
- SageMath is now supported by European Union via the open-math project OpenDreamKit (2015-2019, within the Horizon 2020 program)

#### The mission

Create a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

## The SageManifolds project

http://sagemanifolds.obspm.fr/

#### Aim

Implement smooth manifolds of arbitrary dimension in SageMath and tensor calculus on them

In particular, one should be able

- to introduce an arbitrary number of coordinate charts on a given manifold, with the relevant transition maps
- to express tensor fields in terms of their components in various (possibly non-coordinate) vector frames
- to deal with tensor fields on non-parallelizable manifolds (i.e. without any global vector frame)

## Some mathematical structures in SageManifolds

The implementation of SageManifolds follows SageMath's parent/element framework

### Scalar fields

- $\bullet$  Given an open subset U of manifold M, a scalar field on U is a smooth map  $f:U\to\mathbb{R}$ 
  - f maps points, not coordinates, to real numbers  $\Longrightarrow f$  has different coordinate representations in different charts defined on U.
- The set  $C^{\infty}(U)$  of scalar fields on U is a **commutative algebra over**  $\mathbb{R}$   $C^{\infty}(U)$  is the parent of f.

## Some mathematical structures in SageManifolds

The implementation of SageManifolds follows SageMath's parent/element framework

### Scalar fields

- Given an open subset U of manifold M, a scalar field on U is a smooth map  $f:U\to\mathbb{R}$ 
  - f maps points, not coordinates, to real numbers  $\implies f$  has different coordinate representations in different charts defined on U.
- The set  $C^{\infty}(U)$  of scalar fields on U is a **commutative algebra over**  $\mathbb{R}$  $C^{\infty}(U)$  is the parent of f.

### Vector fields

The set  $\mathcal{X}(U)$  of smooth vector fields defined on U is a **module over the scalar field algebra**  $C^{\infty}(U)$ .  $\mathcal{X}(U)$  is the parent of vector fields on U.

$$\mathcal{X}(U)$$
 is a **free module**  $\iff$   $\mathcal{X}(U)$  admits a basis

$$\iff$$
  $\mathcal{X}(U)$  admits a basis

$$\iff$$
  $U$  admits a global vector frame

$$\iff$$
  $U$  is parallelizable

$$\iff$$
 U's tangent bundle is trivial:  $TU \simeq U \times \mathbb{R}^n$ 

## Example: black branes in 5-dim Lifshitz-like spacetimes

A full example with SageManifolds running in a Jupyter notebook

Motivation: study of the anisotropic phase of the quark-gluon plasma via the gravity/gauge duality cf. arXiv:1601.06046



Get/read the worksheet at

http://nbviewer.ipython.org/github/sagemanifolds/SageManifolds/blob/master/Worksheets/v0.9/SM\_black\_brane.ipynb

GR21. New York. 12 July 2016

## Black branes in Lifshitz-like spacetimes

This Jupyter/SageMath worksheet implements some computations of the article

 I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: Analytic black branes in Lifshitz-like backgrounds and thermalization, arXiv:1601.06046

These computations are based on <u>SageManifolds</u> (v0.9)

The worksheet file (ipynb format) can be downloaded from <a href="here">here</a>.

First we set up the notebook to display mathematical objects using LaTeX formatting:

```
In [1]: %display latex
```

### Space manifold

Let us declare M as a 5-dimensional manifold:

```
In [2]: M = Manifold(5, 'M')
print(M)
```

5-dimensional differentiable manifold M

We introduce a coordinate system on M:

Out[3]:  $(M, (t, x, y_1, y_2, r))$ 

Next, we define the metric tensor, which depends on some real number  $\nu$  and some arbitary function f:

Out[4]: 
$$g = -e^{(2\nu r)} f(r) dt \otimes dt + e^{(2\nu r)} dx \otimes dx + e^{(2r)} dy_1 \otimes dy_1 + e^{(2r)} dy_2 \otimes dy_2 + \frac{1}{f(r)} dr \otimes dr$$

If f(r)=1, this is the metric of a Lifshitz spacetime; if, in addition  $\nu=1$ , (M,g) is a Poincaré patch of  ${\rm AdS}_5$ .

#### Curvature

The Riemann tensor is

Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable m anifold M

Out[6]: Riem(g)<sup>t</sup><sub>xtx</sub> = 
$$-\nu^2 e^{(2\nu r)} f(r) - \frac{1}{2} \nu e^{(2\nu r)} \frac{\partial f}{\partial r}$$
  
Riem(g)<sup>t</sup><sub>y<sub>1</sub>ty<sub>1</sub></sub> =  $-\nu e^{(2r)} f(r) - \frac{1}{2} e^{(2r)} \frac{\partial f}{\partial r}$   
Riem(g)<sup>t</sup><sub>y<sub>2</sub>ty<sub>2</sub></sub> =  $-\nu e^{(2r)} f(r) - \frac{1}{2} e^{(2r)} \frac{\partial f}{\partial r}$   
Riem(g)<sup>t</sup><sub>rtr</sub> =  $-\frac{2\nu^2 f(r) + 3\nu \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial r^2}}{2f(r)}$   
Riem(g)<sup>x</sup><sub>ttx</sub> =  $-\nu^2 e^{(2\nu r)} f(r)^2 - \frac{1}{2} \nu e^{(2\nu r)} f(r) \frac{\partial f}{\partial r}$   
Riem(g)<sup>x</sup><sub>y<sub>1</sub>xy<sub>1</sub></sub> =  $-\nu e^{(2r)} f(r)$   
Riem(g)<sup>x</sup><sub>y<sub>2</sub>xy<sub>2</sub></sub> =  $-\nu e^{(2r)} f(r)$   
Riem(g)<sup>x</sup><sub>rxr</sub> =  $-\frac{2\nu^2 f(r) + \nu \frac{\partial f}{\partial r}}{2f(r)}$ 

$$\begin{aligned} & \text{Riem}(g)^{y_1}{}_{t\,t\,y_1} & = & -\nu e^{(2\,\nu r)} f(r)^2 - \frac{1}{2}\, e^{(2\,\nu r)} f\left(r\right) \frac{\partial f}{\partial r} \\ & \text{Riem}(g)^{y_1}{}_{x\,x\,y_1} & = & \nu e^{(2\,\nu r)} f\left(r\right) \\ & \text{Riem}(g)^{y_1}{}_{y_2\,y_1\,y_2} & = & -e^{(2\,r)} f\left(r\right) \\ & \text{Riem}(g)^{y_1}{}_{r\,y_1\,r} & = & -\frac{2f(r) + \frac{\partial f}{\partial r}}{2f(r)} \\ & \text{Riem}(g)^{y_2}{}_{t\,t\,y_2} & = & -\nu e^{(2\,\nu r)} f(r)^2 - \frac{1}{2}\, e^{(2\,\nu r)} f\left(r\right) \frac{\partial f}{\partial r} \\ & \text{Riem}(g)^{y_2}{}_{x\,x\,y_2} & = & \nu e^{(2\,\nu r)} f\left(r\right) \\ & \text{Riem}(g)^{y_2}{}_{x\,x\,y_2} & = & e^{(2\,\nu r)} f\left(r\right) \\ & \text{Riem}(g)^{y_2}{}_{y_1\,y_1\,y_2} & = & e^{(2\,r)} f\left(r\right) \\ & \text{Riem}(g)^{y_2}{}_{r\,y_2\,r} & = & -\frac{2f(r) + \frac{\partial f}{\partial r}}{2f(r)} \\ & \text{Riem}(g)^{r}{}_{t\,t\,r} & = & -\nu^2 e^{(2\,\nu r)} f(r)^2 - \frac{3}{2}\,\nu e^{(2\,\nu r)} f\left(r\right) \frac{\partial f}{\partial r} - \frac{1}{2}\,e^{(2\,\nu r)} f\left(r\right) \frac{\partial^2 f}{\partial r^2} \\ & \text{Riem}(g)^{r}{}_{y_1\,y_1\,r} & = & e^{(2\,r)} f\left(r\right) + \frac{1}{2}\,\nu e^{(2\,r)} \frac{\partial f}{\partial r} \\ & \text{Riem}(g)^{r}{}_{y_2\,y_3\,r} & = & e^{(2\,r)} f\left(r\right) + \frac{1}{2}\,e^{(2\,r)} \frac{\partial f}{\partial r} \end{aligned}$$

The Ricci tensor:

In [7]: Ric = g.ricci()
print(Ric)

Field of symmetric bilinear forms  $\mbox{\rm Ric}(g)$  on the 5-dimensional differentiable manifold  $\mbox{\rm M}$ 

In [8]: Ric.display()

Out[8]:

$$\begin{aligned} \operatorname{Ric}(g) &= \left( 2 \left( \nu^2 + \nu \right) e^{(2 \, \nu r)} f(r)^2 + (2 \, \nu + 1) e^{(2 \, \nu r)} f\left( r \right) \frac{\partial f}{\partial r} + \frac{1}{2} \, e^{(2 \, \nu r)} f\left( r \right) \frac{\partial^2 f}{\partial r^2} \right) \mathrm{d}t \\ &\otimes \operatorname{d}t + \left( -2 \left( \nu^2 + \nu \right) e^{(2 \, \nu r)} f\left( r \right) - \nu e^{(2 \, \nu r)} \frac{\partial f}{\partial r} \right) \mathrm{d}x \otimes \mathrm{d}x \\ &+ \left( -2 \left( \nu + 1 \right) e^{(2 \, r)} f\left( r \right) - e^{(2 \, r)} \frac{\partial f}{\partial r} \right) \mathrm{d}y_1 \otimes \mathrm{d}y_1 \\ &+ \left( -2 \left( \nu + 1 \right) e^{(2 \, r)} f\left( r \right) - e^{(2 \, r)} \frac{\partial f}{\partial r} \right) \mathrm{d}y_2 \otimes \mathrm{d}y_2 \\ &+ \left( -\frac{4 \left( \nu^2 + 1 \right) f\left( r \right) + 2 \left( 2 \, \nu + 1 \right) \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial r^2}}{2 f\left( r \right)} \right) \mathrm{d}r \otimes \mathrm{d}r \end{aligned}$$

In [9]: Ric.display\_comp()

Out[9]: Ric(g)<sub>tt</sub> = 
$$2(\nu^2 + \nu)e^{(2\nu r)}f(r)^2 + (2\nu + 1)e^{(2\nu r)}f(r)\frac{\partial f}{\partial r} + \frac{1}{2}e^{(2\nu r)}f(r)\frac{\partial^2 f}{\partial r^2}$$
  
Ric(g)<sub>xx</sub> =  $-2(\nu^2 + \nu)e^{(2\nu r)}f(r) - \nu e^{(2\nu r)}\frac{\partial f}{\partial r}$   
Ric(g)<sub>y1y1</sub> =  $-2(\nu + 1)e^{(2r)}f(r) - e^{(2r)}\frac{\partial f}{\partial r}$   
Ric(g)<sub>y2y2</sub> =  $-2(\nu + 1)e^{(2r)}f(r) - e^{(2r)}\frac{\partial f}{\partial r}$   
Ric(g)<sub>rr</sub> =  $-\frac{4(\nu^2 + 1)f(r) + 2(2\nu + 1)\frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial r^2}}{2f(r)}$ 

The Ricci scalar:

Scalar field r(g) on the 5-dimensional differentiable manifold M

In [11]: Rscal.display()

Out[11]: 
$$r(g): M \longrightarrow \mathbb{R}$$
  
 $(t, x, y_1, y_2, r) \longmapsto -2 (3 \nu^2 + 4 \nu + 3) f(r) - (5 \nu + 4) \frac{\partial f}{\partial r} - \frac{\partial^2 f}{\partial r^2}$ 

#### Source model

Let us consider a model based on the following action, involving a cosmological constant  $\bar{\Lambda}=-\Lambda/2$  with  $\Lambda>0$ , a dilaton scalar field  $\phi$  and a Maxwell 2-form F:

$$S = \int \left( R(g) + \Lambda - \frac{1}{2} \nabla_m \phi \nabla^m \phi - \frac{1}{4} e^{\lambda \phi} F_{mn} F^{mn} \right) \sqrt{-g} \, \mathrm{d}^5 x \tag{1}$$

where R(g) is the Ricci scalar of metric g and  $\lambda$  is the dilatonic coupling constant.

#### The dilaton scalar field

We consider the following ansatz for the dilaton scalar field  $\phi$ :

$$\phi = \frac{1}{\lambda} (4r + \ln \mu) \iff e^{\lambda \phi} = \mu e^{4r},$$

where  $\mu$  is a constant.

Out[12]: 
$$\phi: M \longrightarrow \mathbb{R}$$

$$(t, x, y_1, y_2, r) \longmapsto \frac{4 r + \log(\mu)}{\lambda}$$

The 1-form  $\mathrm{d}\phi$  is

1-form dphi on the 5-dimensional differentiable manifold M

In [14]: dphi.display()

Out[14]: 
$$\mathrm{d}\phi = \frac{4}{\lambda}\mathrm{d}r$$

In [15]: dphi[:] # all the components in the default frame

Out[15]: 
$$\left[0, 0, 0, 0, \frac{4}{\lambda}\right]$$

#### The 2-form field

We consider the following ansatz for F:

$$F = \frac{1}{2} q \, \mathrm{d} y_1 \wedge \mathrm{d} y_2,$$

where q is a constant. Let us first get the 1-forms  $dy_1$  and  $dy_2$ :

Out[16]: 
$$(M, (dt, dx, dy_1, dy_2, dr))$$

```
In [17]: dy1 = X.coframe()[2]
     dy2 = X.coframe()[3]
```

Then we can form F according to the above ansatz:

2-form F on the 5-dimensional differentiable manifold  ${\tt M}$ 

Out[18]: 
$$F = \frac{1}{2} q dy_1 \wedge dy_2$$

By construction, the 2-form F is closed (since q is constant):

3-form dF on the 5-dimensional differentiable manifold  ${\tt M}$ 

Let us evaluate the square  $F_{mn}F^{mn}$  of F:

Tensor field of type (2,0) on the 5-dimensional differentiable manifold  $\ensuremath{\mathsf{M}}$ 

Scalar field on the 5-dimensional differentiable manifold M

Out[22]: 
$$M \longrightarrow \mathbb{R}$$
  
 $(t, x, y_1, y_2, r) \longmapsto \frac{1}{2} q^2 e^{(-4r)}$ 

We shall also need the tensor  $\mathcal{F}_{mn} := F_{mp} F_n^p$ :

Tensor field of type (0,2) on the 5-dimensional differentiable manifold M

Out[23]: 
$$\frac{1}{4} q^2 e^{(-2r)} dy_1 \otimes dy_1 + \frac{1}{4} q^2 e^{(-2r)} dy_2 \otimes dy_2$$

The tensor field  ${\cal F}$  is symmetric:

```
In [24]: FF == FF.symmetrize()
```

Out[24]: True

Therefore, from now on, we set

### Einstein equation

Let us first introduce the cosmological constant:

From the action (1), the field equation for the metric g is

$$R_{mn} + \frac{\Lambda}{3} g - \frac{1}{2} \partial_m \phi \partial_n \phi - \frac{1}{2} e^{\lambda \phi} F_{mp} F_n^{\ p} + \frac{1}{12} e^{\lambda \phi} F_{rs} F^{rs} g_{mn} = 0$$

We write it as

Out[26]: A

with EE defined by

Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold  ${\rm M}$ 

In [28]: EE.display\_comp(only\_nonredundant=True)

Out[28]: 
$$E_{tt} = 2(\nu^2 + \nu)e^{(2\nu r)}f(r)^2 + (2\nu + 1)e^{(2\nu r)}f(r)\frac{\partial f}{\partial r} - \frac{1}{24}(\mu q^2 + 8\Lambda)e^{(2\nu r)}f(r)$$
  
 $e^{(2\nu r)}f(r)\frac{\partial^2 f}{\partial r^2}$ 

$$E_{xx} = -2 \left( \nu^2 + \nu \right) e^{(2 \nu r)} f(r) - \nu e^{(2 \nu r)} \frac{\partial f}{\partial r} + \frac{1}{24} \left( \mu q^2 + 8 \Lambda \right) e^{(2 \nu r)}$$

$$E_{y_1 y_1} = -2 \left( \nu + 1 \right) e^{(2 r)} f(r) - \frac{1}{12} \left( \mu q^2 - 4 \Lambda \right) e^{(2 r)} - e^{(2 r)} \frac{\partial f}{\partial r}$$

$$E_{y_2 y_2} = -2(\nu + 1)e^{(2r)}f(r) - \frac{1}{12}(\mu q^2 - 4\Lambda)e^{(2r)} - e^{(2r)}\frac{\partial f}{\partial r}$$

$$E_{rr} = \frac{\lambda^2 \mu q^2 + 8 \; \Lambda \lambda^2 - 12 \; \lambda^2 \frac{\delta^2 f}{\delta r^2} - 48 \; \left(\lambda^2 \nu^2 + \lambda^2 + 4\right) f(r) - 24 \; \left(2 \; \lambda^2 \nu + \lambda^2\right) \frac{\delta f}{\delta r}}{24 \; \lambda^2 f(r)}$$

We note that EE==0 leads to only 4 independent equations:

Out[29]: 
$$2\left(\nu^{2}+\nu\right)\!f(r)^{2}+(2\,\nu+1)\!f\left(r\right)\,\frac{\partial f}{\partial r}-\frac{1}{24}\left(\mu q^{2}+8\,\Lambda\right)\!f\left(r\right)+\frac{1}{2}f\left(r\right)\,\frac{\partial^{2}f}{\partial r^{2}}$$

Out[30]: 
$$\frac{1}{24} \mu q^2 - 2(\nu^2 + \nu) f(r) - \nu \frac{\partial f}{\partial r} + \frac{1}{3} \Lambda$$

In [31]: eq2 = 
$$EE[2,2]/exp(2*r)$$
 eq2

Out[31]: 
$$-\frac{1}{12} \mu q^2 - 2(\nu + 1)f(r) + \frac{1}{3} \Lambda - \frac{\partial f}{\partial r}$$

Out[32]: 
$$\frac{1}{24} \lambda^2 \mu q^2 + \frac{1}{3} \Lambda \lambda^2 - \frac{1}{2} \lambda^2 \frac{\partial^2 f}{\partial r^2} - 2 (\lambda^2 \nu^2 + \lambda^2 + 4) f(r) - (2 \lambda^2 \nu + \lambda^2) \frac{\partial f}{\partial r}$$

### Dilaton field equation

First we evaluate  $\nabla_m \nabla^m \phi$ :

Levi-Civita connection  $nabla\_g$  associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M

Scalar field on the 5-dimensional differentiable manifold M

Out[34]: 
$$M \longrightarrow \mathbb{R}$$

$$(t, x, y_1, y_2, r) \longmapsto \frac{4\left(2\left(\nu+1\right)f(r) + \frac{\partial f}{\partial r}\right)}{\lambda}$$

From the action (1), the field equation for  $\phi$  is

$$\nabla_m \nabla^m \phi = \frac{\lambda}{4} e^{\lambda \phi} F_{mn} F^{mn}$$

We write it as

with DE defined by

Scalar field on the 5-dimensional differentiable manifold M

Out[35]: 
$$M \longrightarrow \mathbb{R}$$
  

$$(t, x, y_1, y_2, r) \longmapsto -\frac{\lambda^2 \mu q^2 - 64 (\nu + 1) f(r) - 32 \frac{\partial f}{\partial r}}{8 \lambda}$$

Hence the dilaton field equation provides a fourth equation:

Out[36]: 
$$-\frac{1}{8} \lambda^2 \mu q^2 + 8 (\nu + 1) f(r) + 4 \frac{\partial f}{\partial r}$$

### Maxwell equation

From the action (1), the field equation for F is

$$\nabla_m \left( e^{\lambda \phi} F^{mn} \right) = 0$$

We write it as

$$ME == 0$$

with ME defined by

Vector field on the 5-dimensional differentiable manifold M

Out[37]: 0

Out[38]:

We get identically zero; indeed the tensor  $\nabla_p(e^{\lambda\phi}F^{mn})$  has a vanishing trace, as we can check:

Out[38]: 
$$\mu q \frac{\partial}{\partial y_{1}} \otimes \frac{\partial}{\partial y_{2}} \otimes dr - \frac{1}{2} \mu q e^{(2 r)} f(r) \frac{\partial}{\partial y_{1}} \otimes \frac{\partial}{\partial r} \otimes dy_{2} - \mu q \frac{\partial}{\partial y_{2}} \otimes \frac{\partial}{\partial y_{1}} \otimes dr + \frac{1}{2}$$
$$\mu q e^{(2 r)} f(r) \frac{\partial}{\partial y_{2}} \otimes \frac{\partial}{\partial r} \otimes dy_{1} + \frac{1}{2} \mu q e^{(2 r)} f(r) \frac{\partial}{\partial r} \otimes \frac{\partial}{\partial y_{1}} \otimes dy_{2} - \frac{1}{2} \mu q e^{(2 r)} f(r) \frac{\partial}{\partial r}$$

### Solving the field equations

The system to solve is

```
In [39]: eqs = [eq0, eq1, eq2, eq3, eq4]
                      for ea in eas:
                               pretty print(eq, ' = 0')
                     2(\nu^2 + \nu)f(r)^2 + (2\nu + 1)f(r)\frac{\partial f}{\partial r} - \frac{1}{24}(\mu q^2 + 8\Lambda)f(r) + \frac{1}{2}f(r)\frac{\partial^2 f}{\partial r^2} = 0
                     \frac{1}{24}\mu q^2 - 2(\nu^2 + \nu)f(r) - \nu \frac{\partial f}{\partial r} + \frac{1}{2}\Lambda = 0
                     -\frac{1}{12}\mu q^2 - 2(\nu+1)f(r) + \frac{1}{2}\Lambda - \frac{\partial f}{\partial r} = 0
                     \frac{1}{24}\lambda^{2}\mu q^{2} + \frac{1}{2}\Lambda\lambda^{2} - \frac{1}{2}\lambda^{2}\frac{\partial^{2}f}{\partial x^{2}} - 2(\lambda^{2}\nu^{2} + \lambda^{2} + 4)f(r) - (2\lambda^{2}\nu + \lambda^{2})\frac{\partial f}{\partial x^{2}} = 0
                     -\frac{1}{9}\lambda^2\mu q^2 + 8(\nu+1)f(r) + 4\frac{\partial f}{\partial r} = 0
```

Let us solve eq1 for f(r):

Out[40]: 
$$Ce^{(-2(\nu+1)r)} + \frac{\mu q^2}{48(\nu+1)\nu} + \frac{\Lambda}{6(\nu+1)\nu}$$

Hence, up to some rescaling the solution is of the type

$$f(r) = 1 - me^{-(2\nu + 2)r},$$

where m is a constant. Hence we declare

Out[41]: 
$$r \mapsto -me^{(-2(\nu+1)r)} + 1$$

and substitute this function for f(r) in all the equations:

Out [42]: 
$$\frac{1}{24}$$

$$(m\mu q^2 - 48 \, m\nu^2 + 8 \, \Lambda m - 48 \, m\nu - (\mu q^2 - 48 \, \nu^2 + 8 \, \Lambda - 48 \, \nu)e^{(2 \, \nu r + 2 \, r)})e^{(-2 \, \nu r - 2 \, r)}$$

Out[43]: 
$$\frac{1}{24} m\mu q^2 - 2 m\nu^2 + \frac{1}{3} \Lambda m - 2 m\nu - \frac{1}{24} (\mu q^2 - 48 \nu^2 + 8 \Lambda - 48 \nu) e^{(2 \nu r + 2 r)}$$

Out[44]: 
$$\frac{1}{24} \mu q^2 - 2 \nu^2 + \frac{1}{3} \Lambda - 2 \nu$$

Out[45]: 
$$-\frac{1}{12}\mu q^2 + \frac{1}{3}\Lambda - 2\nu - 2$$

Out[46]: 
$$-\frac{1}{24}$$

$$(48 \lambda^2 m\nu - 48 (\lambda^2 + 4)m)$$

$$-(\lambda^2 \mu q^2 - 48 \lambda^2 \nu^2 + 8 (\Lambda - 6)\lambda^2 - 192)e^{(2\nu r + 2r)})e^{(-2\nu r - 2r)}$$

Out[47]: 
$$-2 \lambda^2 m \nu + 2 (\lambda^2 + 4) m + \frac{1}{24} (\lambda^2 \mu q^2 - 48 \lambda^2 \nu^2 + 8 (\Lambda - 6) \lambda^2 - 192) e^{(2 \nu r + 2 r)}$$

Out[48]: 
$$-\frac{1}{8} \lambda^2 \mu q^2 + 8 \nu + 8$$

In [49]: eqs = 
$$[eq0m, eq1m, eq2m, eq3m, eq4m]$$

### Solution for $\nu = 2$

Out[50]: 
$$\left[ \frac{1}{24} m\mu q^2 + \frac{1}{3} (\Lambda - 36)m - \frac{1}{24} (\mu q^2 + 8 \Lambda - 288) e^{(6 r)} = 0, \frac{1}{24} \mu q^2 + \frac{1}{3} \Lambda - 12 \right]$$

$$= 0, -\frac{1}{12} \mu q^2 + \frac{1}{3} \Lambda - 6 = 0, -2 (\lambda^2 - 4)m + \frac{1}{24}$$

$$(\lambda^2 \mu q^2 + 8 (\Lambda - 30)\lambda^2 - 192) e^{(6 r)} = 0, -\frac{1}{8} \lambda^2 \mu q^2 + 24 = 0$$

In [51]: 
$$solve([eq == 0 \text{ for } eq \text{ in } neqs], lamb, mu, Lamb, q, m, r)$$

$$\left[ \left[ \lambda = 2, \mu = \frac{48}{r_1^2}, \Lambda = 30, q = r_1, m = r_2, r = r_3 \right], \\ \left[ \lambda = (-2), \mu = \frac{48}{r_4^2}, \Lambda = 30, q = r_4, m = r_5, r = r_6 \right] \right]$$

In the above solutions,  $r_i$ , with i an integer, stands for an arbitrary parameter. In particular, we notice that  $\mu$  and q are related by  $\mu q^2 = 48$  and that the value of m can be chosen arbitrarily.

27 / 34

### Solution for $\nu = 4$

Out[52]: 
$$\left[\frac{1}{24} m\mu q^2 + \frac{1}{3} (\Lambda - 120)m - \frac{1}{24} (\mu q^2 + 8 \Lambda - 960)e^{(10 r)} = 0, \frac{1}{24} \mu q^2 + \frac{1}{3} \Lambda - 40\right]$$
$$= 0, -\frac{1}{12} \mu q^2 + \frac{1}{3} \Lambda - 10 = 0, -2 (3 \lambda^2 - 4)m + \frac{1}{24}$$
$$(\lambda^2 \mu q^2 + 8 (\Lambda - 102)\lambda^2 - 192)e^{(10 r)} = 0, -\frac{1}{8} \lambda^2 \mu q^2 + 40 = 0$$

In [53]: 
$$solve([eq == 0 \text{ for } eq \text{ in } neqs], lamb, mu, Lamb, q, m, r)$$

$$\left[ \lambda = \frac{2}{3} \sqrt{3}, \mu = \frac{240}{r_7^2}, \Lambda = 90, q = r_7, m = r_8, r = r_9 \right],$$

$$\left[ \lambda = -\frac{2}{3} \sqrt{3}, \mu = \frac{240}{r_{10}^2}, \Lambda = 90, q = r_{10}, m = r_{11}, r = r_{12} \right]$$

As above,  $r_i$ , with i an integer, stands for an arbitrary parameter. The constants  $\mu$  and q are now related by  $\mu q^2 = 240$  and the value of m is still arbitrary.

## Graphical example: the 2-sphere



Stereographic coordinates on the 2-sphere

#### Two charts:

- $X_1: \mathbb{S}^2 \setminus \{N\} \to \mathbb{R}^2$
- $X_2: \mathbb{S}^2 \setminus \{S\} \to \mathbb{R}^2$
- picture drawn with Chart.plot()

See the worksheet at

http://sagemanifolds.obspm.fr/examples/html/SM\_sphere\_S2.html

## Graphical example: the 2-sphere



Vector frame associated with the stereographic coordinates (x,y) from the North pole

- $\frac{\partial}{\partial x}$
- $\bullet$   $\frac{\partial}{\partial y}$

## Charts on Schwarzschild spacetime

The Carter-Penrose diagram



Two charts of standard Schwarzschild-Droste coordinates  $(t,r,\theta,\varphi)$  plotted in terms of compactified coordinates  $(\tilde{T},\tilde{X},\theta,\varphi)$ 

See the worksheet at

http://sagemanifolds.obspm.fr/examples/html/SM\_Carter-Penrose\_diag.html

## Vaidya spacetime

- yellow: infalling shell of radiation
- green: radial null geodesics
- red: trapping horizon
- black: event horizon

See the worksheet at http://nbviewer.jupyter.org/ github/egourgoulhon/ BHLectures/blob/master/sage/ Vaidya.ipynb



## Conclusion and perspectives

- SageManifolds is a work in progress
  - $\sim$  64,000 lines of Python code up to now (including comments and doctests)
- A preliminary version (v0.9) is freely available (GPL) at http://sagemanifolds.obspm.fr/ with the following features:
  - maps between manifolds, pullback operator
  - curves in manifolds
  - standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on non-parallelizable manifolds
  - all monoterm tensor symmetries
  - exterior calculus (wedge product, exterior derivative, Hodge duality)
  - · Lie derivatives of tensor fields
  - affine connections, curvature, torsion
  - pseudo-Riemannian metrics, Weyl tensor
  - some plotting capabilities (charts, points, curves, vector fields)
  - parallelization (on tensor components) of CPU demanding computations, via the Python library multiprocessing

## Conclusion and perspectives

## SageManifolds is aimed to be fully integrated into SageMath

Ongoing review process by the SageMath community: cf. the metaticket <a href="https://trac.sagemath.org/ticket/18528">https://trac.sagemath.org/ticket/18528</a>
Some parts are already included in SageMath 7.2 (more in the next 7.3)

### Meanwhile, one can either

- install it atop SageMath via a simple script
- use it online on the SageMathCloud (where it is installed system-wide): just open a free account at https://cloud.sagemath.com/

## Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/ (download, documentation, example worksheets, mailing list)