Sphere S?

This notebook demonstrates some differential geometry capabilities of SageMath on the example of the 2-
dimensional sphere. The corresponding tools have been developed within the SageManifolds project.

NB: a version of SageMath at least equal to 9.3 is required to run this notebook:

version ()

'SageMath version 9.7, Release Date: 2022-09-19'

First we set up the notebook to display math formulas using LaTeX formatting:

%display latex

S? from the manifold catalog

The 2-sphere, with predefined charts and embedding in the Euclidean 3-space, can be obtained directly
from SageMath's manifold catalog:

S2 = manifolds.Sphere(2)
S2

S2

print (S2)

2-sphere $S"2 of radius 1 smoothly embedded in the Euclidean space E"3

S2.spherical coordinates ()
(4,(6,))

S2.metric () .display()

g =df ® df + sin (0)°d¢ ® do

82 defined from scratch as a 2-dimensional smooth manifold

For the purpose of introducing generic smooth manifolds in SageMath, we shall not use the above

predefined object. Instead we shall construct S? from scratch, by invoking the generic function Manifold :
S2 = Manifold (2, 'S"2', latex_name=r'\mathbb{S}AZ', start index=1)

The first argument, 2 , is the dimension of the manifold, while the second argument is the symbol used to
label the manifold.

The argument start index sets the index range to be used on the manifold for labelling components
w.r.t. a basis or a frame: start_index=1 corresponds to {1, 2}; the default value is start index=0

https://sagemanifolds.obspm.fr/

and yields {0, 1}.
The function Manifold has actually many options, which are displayed via the command Manifold? :
Manifold?

By default Manifold constructs a smooth manifold over IR:
print (S2)
2-dimensional differentiable manifold S"2
S2
S2
2. . . _
S< is in the category of smooth manifolds over R:

S2.category ()

Smoothg

print (S2.category())

Category of smooth manifolds over Real Field with 53 bits of precision

At the moment, the real field R is modeled by 53-bit floating-point approximations, but this plays no role in
the manifold implementation:

print (S2.base field())
Real Field with 53 bits of precision

S2.base field() is RR

True

Coordinate charts on S?

The function Manifold generates a manifold with no-predefined coordinate chart, so that the manifold
(user) atlas is empty:

S2.atlas ()

[

Let us introduce some charts. At least two charts are necessary to cover the sphere. Let us choose the
charts associated with the stereographic projections to the equatorial plane from the North pole and the
South pole respectively. We first introduce the open subsets covered by these two charts:

U:=8"\ {N},

V.=$*\ {8},

where N is a point of S?, which we shall call the North pole, and .S is the point of U of stereographic
coordinates (0, 0), which we call the South pole:

To find the method to create an open subset, we type U = S2.<TAB> to get the list of possible methods
by autocompletion:

#U = S2.
U = S2.open_subset ('U")

print (U)

Open subset U of the 2-dimensional differentiable manifold S*2

V = S2.open_subset ('V')
print (V)

Open subset V of the 2-dimensional differentiable manifold S*2

As an open subset of a smooth manifold, U is itself a smooth manifold:

print (U.category())

Join of Category of subobjects of sets and Category of smooth manifolds over Real Field
with 53 bits of precision

We declare that S = U U V-
S2.declare union (U, V)

The stereographic chart on U is constructed from the stereographic projection from the North pole onto
the equatorial plane: in the Wikipedia figure below, the stereographic coordinates (zc, y) of the point
P € U are the Cartesian coordinates of the point P’ in the equatorial plane.

Z
M

N

We call this chart stereoN and construct it via the method chart :
stereoN.<x,y> = U.chart ()

The syntax .<X,y> in the left-hand side implies that the Python names x and y are added to the
global namespace, to access to the two coordinates of the chart as symbolic variables. This allows one to
refer subsequently to the coordinates by these names. Besides, in the present case, the function

chart () has no argument, which implies that the coordinate symbols will be x and y (i.e. exactly the
characters appearing in the <...> operator) and that each coordinate range is (—oo, —|—oo). As we will

https://en.wikipedia.org/wiki/Stereographic_projection

see below, for other cases, an argument must be passed to chart() to specify each coordinate symbol
and range, as well as some specific LaTeX symbol.

Note: the notation .<x,y> is not standard Python syntax, but a "SageMath enhanced" syntax. Actually the
SageMath kernel preparses the cell entries before sending them to the Python interpreter. The outcome of
the preparser is shown by the function preparse . In the present case:

print (preparse ("stereoN.<x,y> = U.chart()"))

stereoN = U.chart (names=('x"', 'y',)); (x, y,) = stereoN. first ngens(2)

Another example of preparsing:
preparse ("273")
Integer(2)**xInteger(3)

The chart created by the above command:

stereoN
U, (z,y))

print (stereoN)
Chart (U, (x, y))
stereoN.coord range ()

Z: (——OO,—FOO); y: (——OO,—FOO)

The coordinates can be accessed individually, either by means of their indices in the chart (following the
convention start index=1 set in the manifold's definition) or by their names as Python variables:

stereoN[1]

Z

y is stereoN[2]

True

The coordinates are SageMath symbolic expressions:

type (y)

<class ’sage.symbolic.expression.Expression’>

y.parent ()

SR

Stereographic coordinates from the South Pole

We introduce on V the coordinates (a:', y') corresponding to the stereographic projection from the South
pole:

stereoS.<xp,yp> = V.chart ("xp:x' yp:y'")

In this case, the string argument passed to chart stipulates that the text-only names of the coordinates
are xp and yp (same as the Python variables names defined within the <...> operator in the left-hand
side), while their LaTeX names are x’ and y'.

stereoS
/ /
(V, (', y))
At this stage, the user's atlas on the manifold is made of two charts:

S2.atlas()
(U, (z,9)), (V. («,1))]

To complete the construction of the manifold structure, we have to specify the transition map between the
charts stereoN = (U, (z,y))and stereoS = (V,(z',y’));itis given by standard inversion
formulas:

stereoN to S = stereoN.transition map (stereoS,
(x/ (x*24y°2), y/ (x*2+y*2)),
intersection name='W',
restrictionsl= x*2+y*2!=0,
restrictions2= xp*2+yp”2!=0)
stereoN to S.display ()

!/ _ T
T - xz +y2
I _ Yy
y - :1:2 +y2

In the above declaration, 'W' is the name given to the chart-overlap subset: W := U N V/, the condition

x2 + y? # 0 defines W as a subset of U, and the condition z'? + y'2 # 0 defines W as a subset of
V.

The inverse coordinate transformation is computed by means of the method inverse() :

stereoS to N = stereoN to S.inverse ()
stereoS to N.display ()

_a
EEYD
y/

Yy = ﬂ2+yﬂ

€T =

In the present case, the situation is of course perfectly symmetric regarding the coordinates (:B, y) and
(@),

At this stage, the user's atlas has four charts:

S2.atlas ()
[(U7 (z,9)), (V’ (x/, y/)) , (W, (z,9)), (W7 (xla yl))}

Let us store W = U N V into a Python variable for future use:

W = U.intersection (V)

Similarly we store the charts (W, (,y)) (the restriction of (U, (z,y)) to W)and (W, (z',3")) (the
restriction of (V, (z’,y")) to W) into Python variables:

stereoN W = stereoN.restrict (W)
stereoN W

(W, (z,9))

stereoN W is S2.atlas () [2]

True

stereoS W = stereoS.restrict (W)
stereoS W

(W, («',y))

Coordinate charts are endoved with a method plot . For instance, we may plot the chart (W, (z',y')) in
terms of itself, as a grid:

stereoS W.plot ()

[¢]

an

4

M

M

I

an

us]

More interestingly, let us plot the stereographic chart (:U', y') in terms of the stereographic chart (:B, y) on
the domain WW where both systems overlap. We split the plot in four parts to avoid the singularity at
(x', y') = (O, 0) and ask for the coordinate lines along which x' (resp. y') varies to be colored in purple

(resp. cyan):

graph = (stereoS W.plot (stereoN, ranges={xp:[-6,-0.02], yp:[-6,-0.02]},
color={xp: 'purple', yp: 'cyan'})
+ stereoS W.plot (stereoN, ranges={xp:[-6,-0.02], yp:[0.02,6]},
color={xp: 'purple', yp: 'cyan'})
+ stereoS W.plot (stereoN, ranges={xp:[0.02,6], yp:[-6,-0.02]},
color={xp: 'purple', yp: 'cyan'})
+ stereoS W.plot (stereoN, ranges={xp:[0.02,6], yp:[0.02,6]},
color={xp: 'purple', yp: 'cyan'}))
graph.show (xmin=-1.5, xmax=1.5, ymin=-1.5, ymax=1.5)

Y
1.5 1

—1.5

Spherical coordinates

The standard spherical coordinates (9, ¢) are defined on the open domain A C W C 82 that is the

complement of the "origin meridian”; since the latter is the half-circle defined by y = 0 and > 0, we
declare:

A = W.open subset('A', coord def={stereoN W: (y'=0, x<0),
stereoS W: (yp'=0, xp<0)})
print (A)

Open subset A of the 2-dimensional differentiable manifold S*2

The restriction of the stereographic chart from the North pole to A is

stereoN A = stereoN W.restrict (A)
stereoN A

(4, (z,y))

We then declare the chart (A, (0, ¢)) by specifying the intervals (0, 7r) and (0, 27r) spanned by
respectively 6 and ¢:

spher.<th,ph> = A.chart (r'th: (0,pi) : \theta ph: (0,2*pi) :\phi')
spher

(4,(6,9))
spher.coord range ()

0: (0,m); ¢: (0,2m)

The specification of the spherical coordinates is completed by providing the transition map with the
stereographic chart (A, (:13, y))

spher to stereoN = spher.transition map (stereoN A,
(sin (th) *cos (ph) / (1-cos (th)),
sin (th) *sin (ph)/ (1-cos (th))))
spher to stereoN.display ()

o cos(¢) sin(6)
ro= = cos(6)—

o sin(¢) sin(6)
y = = cos(6)—1

We also provide the inverse transition map:

spher to stereoN.set inverse (2*atan (1/sgrt (x*2+y*2)), atan2(-y,-x)+pi)

Check of the inverse coordinate transformation:

th == 2*arctan(sgrt(-cos(th) + 1)/sqrt(cos(th) + 1)) **failed**

ph == pi + arctan2(sin(ph)*sin(th)/(cos(th) - 1), cos(ph)*sin(th)/(cos(th) - 1))
iled**

X == x *passed*

y ==y “*passed*

NB: a failed report can reflect a mere lack of simplification.

The check is passed, modulo some lack of trigonometric simplifications in the first two lines.

spher to stereoN.inverse () .display ()

§ = 2arctan| ——
Varty?
¢ = m+arctan(—y, —x)

The transition map (A4, (6, ¢)) — (4, (z',y")) is obtained by combining the transition maps
(A,(0,9)) — (A, (z,y)) and (4, (z,y)) — (A, (2',y’)) via the operator * :

stereoN to S A = stereoN to S.restrict (A4)
spher to stereoS = stereoN to S A * spher to stereoN
spher to stereoS.display ()
' cos(¢) cos(0)—cos(o)
Hi = — :
sin(6)
' cos(0) sin(¢)—sin(¢)
Yy - sin(6)

Similarly, the transition map (4, (z', y
(4, (2,9) = (4, (2,y)) and (4, (z,y)) — (4, (0, 9)):

stereoS to N A = stereoN to S.inverse() .restrict (A)

")) — (A, (6, ¢)) is obtained by combining the transition maps
(

**fa

stereoS to spher = spher to stereoN.inverse() * stereoS to N A
stereoS to spher.display ()

0 = 2 arct&m(\/al:’2 +y’2)

Y x

! /
= 7w — arctan —
¢ (513/2-0-3/2 ’ m’2+y’2)

The user atlas of 82 is now

S2.atlas()
(U, (z,9), (V. (2 9)) , (W, (z,9), (W, (2", %)), (4,(z,9)), (4, (z',¥)) , (4, (6, 9))]

Let us draw the grid of spherical coordinates (9, d)) in terms of stereographic coordinates from the North

pole (z,y):

spher.plot (stereoN, number values=15, ranges={th: (pi/8,pi)})

Y

Points on S?

To create a point on 82, we use SageMath's parent / element syntax, i.e. the call operator S2(...)
acting on the parent S2 , with the point's coordinates in some chart as argument.

For instance, we declare the North pole (resp. the South pole) as the point of coordinates (0, O) in the
chart (V, (2',y")) (resp. in the chart (U, (z, y))):

N = S2((0,0), chart=stereoS, name='N')
print (N)

Point N on the 2-dimensional differentiable manifold S72

S = 52((0,0), chart=stereoN, name='S"')
print (S)

Point S on the 2-dimensional differentiable manifold S"2

N.parent ()

We have of course

N in S2

True
N in U
False
N in V
True
N in A

False

Let us introduce some point p of stereographic coordinates (w, y) = (1, 2):
p = S2((1,2), chart=stereoN, name='p')

p lies in the open subset A:

p in A

True

Charts acting on points

By definition, a chart maps points to pairs of real numbers (the point's coordinates):

stereoN (p) # by definition of p
(1,2)

stereoS (p)

1 2
5’5

spher (p)

(2 arctan (% \/3) , arctan(2)>

stereoS (N)

(0,0)

#stereoN (N) ## returns an error

Maps between manifolds: the embedding of S? into R*

Let us first declare R?’ as the 3-dimensional Euclidean space, denoting the Cartesian coordinates by

(X,Y, 2):

R3.<X,Y,Z2> = EuclideanSpace (name='R"3"', latex_name=r'\mathbb{R}A3', metric name='h')
cartesian = R3.cartesian coordinates ()
cartesian

(R3, (X,Y, Z))
As an Euclidean space, R3 is considered by Sage as a smooth manifold:

print (R3.category())

Join of Category of smooth manifolds over Real Field with 53 bits of precision and Categ
ory of connected manifolds over Real Field with 53 bits of precision and Category of com
plete metric spaces

The embedding @ : S? — R is then defined via the method diff map by providing the standard
formulas relating the stereographic coordinates to the ambient Cartesian ones when considering the
stereographic projection from the point (0, 0, 1) (North pole) or (0,0, —1) (South pole) to the equatorial
plane Z = 0:

Phi = S2.diff map(R3, {(stereoN, cartesian):
[2%x/ (14x224y*2), 2*y/ (1+x*2+4y*2),
(x224y22-1) / (1+x"24+y*2) 1,
(stereoS, cartesian):
[2*xp/ (1+xp”*2+yp”2), 2*yp/ (1+xp"2+yp"2),
(1-xp*2-yp”2) / (1+xp”2+yp”2) 1},
name='Phi', latex_name=r'\Phi')

Phi.display ()
P : S? — R?
onU: (z,y) +— (X,Y,2)

2z 2y z? 4y’ —1
x2+y2+1 Y $2+y2+1 Y x2+y2+1

2 2) y/ $/2+y/2_1
$/2+y/2+1) a:’2+y/2+1 ? x’2+y’2+1

onV: (d,y) — (X,Y,2)

Phi.parent ()

Hom (SQ,]RS)

print (Phi.parent ())

Set of Morphisms from 2-dimensional differentiable manifold S”2 to Euclidean space R"3 i
n Category of smooth manifolds over Real Field with 53 bits of precision

Phi.parent () is Hom(S2, R3)

True

& maps points of S to points of R>:

N1 = Phi (N)
print (N1)
N1

Point Phi (N) on the Euclidean space R"3

& (N)

cartesian (N1)

(0,0,1)

S1 = Phi (S)
print (S1)
S1

Point Phi(S) on the Euclidean space R"3

(9)

cartesian(S1)

(0,0, —1)

pl = Phi (p)
print (pl)
pl

Point Phi(p) on the Euclidean space R"3

® (p)

cartesian (pl)

1 2 2
3’33

® has been defined in terms of the stereographic charts (U, (z,y)) and (V, (', y’)), but we may ask
its expression in terms of spherical coordinates. This triggers a computation involving the transition map

(4, (z,y)) — (4, (0, 9)):
Phi.display(stereoN A, cartesian)
P S? — R?

. . 2z 2y ?+y’-1
on 'A * (w7 y) (X7 Y7 Z) - (x2+y2+1) ‘,L.2+y2_|_1 Y $2+y2+1

Phi.display (spher, cartesian)

®: £ — R
onA: (0,¢) — (X,Y,Z) = (cos(¢)sin(6),sin(¢)sin(h), cos(d))

¢ (6, 9)
(X,Y,Z) R

graph spher = spher.plot (chart=cartesian, mapping=Phi, number values=11,
color="'blue', label axes=False)
graph spher

=1 .00

graph = stereoN.plot (chart=cartesian, mapping=Phi, number values=25,
label axes=False)
graph

cartesian, mapping=Phi, number values=25,

graph += stereoS.plot (chart

[86]:

In

)

label axes=False

color='green',

graph

V.
V7, 8%

mWﬂE‘MMHm J..u! u
T
iﬂ_ m“ﬁﬂ-m-'Thh&f dmﬁ-“r
" ..ﬁlﬂ%/, A ﬂ!—
Sl
AN\ Vg

M

N
92

L/

y=0.00

Out[86]:

N S

mapping=Phi, color='red',

graph += N.plot (chart=cartesian,

[87]:

In

0.05)

graph += S.plot (chart=cartesian,

label offset

mapping=Phi, color='green',

0.05)

graph += p.plot (chart=cartesian,

label offset

mapping=Phi, color='blue',

0.05)

label offset

graph

y/ . . ‘ !
NSO
el S

(o BROTRAN RN
N YA
AL f N«
.3ﬁw1m.ﬂ-!—_wiﬁ-—“'Jﬂiw
W

,ﬂf:ﬂrr. e ;

AN

g

Out[87]:

)

S2.tangent space (p

[88]: Tp =

In

print (Tp)

Tp

out[8s]: TpS?

T,S?

))

print (Tp.category (

[89]:

In

dim (Tp)

[90]:

In

Out[90]:

== dim(S2)

dim (Tp)

[91]:

In

True

Out[91]:

TS?

Tp is S2.tangent bundle () .fiber (p)

True
The vector space TpS2 is endowed with bases inherited from the coordinate frames defined around p:
Tp.bases ()

o o\ (0 o\ (& 0
(e5) (7 a7) - (3 35).

On the contrary, since (V, (:E', y')) is the only chart defined so far around the point [N, we have a unique

predefined basis in TnS?:

T N = S2.tangent space (N)
T N.bases ()

0 0
ox'’ Oy’
To shorten some writings, there is the concept of default basis:

Tp.default basis()

9 9
oz’ Oy

An element of TpS2 is constructed via SageMath's parent/element syntax, i.e. via the call method of the
parent:

v = Tp((-2, 3), name='v"')
print (v)

Tangent vector v at Point p on the 2-dimensional differentiable manifold S*2

Equivalently, one can use the method tangent vector of manifolds:

v == S2.tangent vector(p, -2, 3, name='v')

True
One has of course:

v in Tp

True

v.parent ()
T, S?

The vector v expanded in the default basis of TpS2:

v.display ()

11:—2i—|r3i

v.display(Tp.bases () [1])

[101..

In

>|D
0O

1_2
_
B

SRS

8_5

- [EN
_

I
<
—

(o]

—

+

=)

o

v.display(Tp.bases () [2])

[102..

In

79
5 ¢

4 0
“15 Vg

Out[102]:

0.5)

mapping=Phi, scale=0.2, width

graph += v.plot (chart=cartesian,

graph

[103..

In

Out[103]:

——
PN

AN

N

wL

/]

A

ﬁ.ﬂ“\..ﬁf.

T

N

\

[=]
(=]

'
L]

=

Phi.differential (p)

print (dPhi p)

dPhi p

[104..

In

dPhi p

d®,

Out[104]:

dPhi p.domain ()

[105..

In

out[105]: TpS?

dPhi p.codomain ()
Ts(p) R
®(p)
dPhi p.parent ()
Hom (T, 5%, Ty R
The image by d®,, of the vector v € TPS2 introduced above is

dPhi_p (v)

d®, (v)

print (dPhi p(v))

Vector dPhi p(v) at Point Phi(p) on the Euclidean space R"3
dPhi p(v) in R3.tangent space (Phi (p))

True

dPhi p(v) .display ()

10 1 4
d®, (v) = —5ex + 3 + 32

Algebra of scalar fields

The set C'OO(S2) of all smooth functions S* — R has naturally the structure of a commutative algebra

over R. C®(S?) is therefore returned by the method scalar field algebra() of manifolds:

CS = S2.scalar field algebra()
CS

o= (%)

Since the algebra internal product is the pointwise multiplication, it is clearly commutative, so that 000(82)
belongs to Sage's category of commutative algebras:

print (CS.category())

Join of Category of commutative algebras over Symbolic Ring and Category of homsets of t
opological spaces

The base ring of the algebra C'™° (82) is the field IR, which is represented here by Sage's Symbolic Ring
(SR):

CS.base ring()

SR
Elements of C'® (82) are of course (smooth) scalar fields:

print (CS.an element ())

Scalar field on the 2-dimensional differentiable manifold S"2

This example element is the constant scalar field that takes the value 2:

CS.an _element () .display ()

S? — R
onU: (z,y) +—— 2
onV: (2,y) —— 2
onA: (0,¢) +—— 2

A specific element is the zero one:

f = CS.zero()
print (f)

Scalar field zero on the 2-dimensional differentiable manifold S"2

Scalar fields map points of 82 to real numbers:

(0,0,0)

f.display()

0: S? — R
onU: (z,y) +— 0
onV: (,y) — 0
onAd: (0,¢) +—— 0

Another specific element is the algebra unit element, i.e. the constant scalar field 1:
f = CS.one()
print (f)

Scalar field 1 on the 2-dimensional differentiable manifold S$S72

(1,1,1)
A generic scalar field is defined by its coordinate expression in some chart(s); for instance:

f = S2.scalar field({stereoN: 1/ (1+x"2+y*2)}, name='f"')

f.display ()
f: S? — R
1
onU: (z,y) +—]
W) p , , . x’2+y’2
onW: (2,y) +— R
onA: (0,¢) +— —% cos() + %

We see that Sage has used the transition map between the two stereographic charts on W to express f in
terms of the coordinates (', ') on W. Let us this expression to extend f to the whole of V:

f.add expr by continuation (stereoS, W)

Then f is well defined inall S> = U U V:

f.display ()
2
f: S — R
. 1
onU: (z,y) i)
2. 2
P 'ty

onV: (z —

(Y) 4 $,2+y,2+1

onAd: (0,¢) +— —% cos(6) + %
£ (N)

0

f.parent ()

o= (%)

Scalar fields map the manifold's points to real numbers:

We may define the restrictions of f to the open subsets U and V:

fU = f.restrict (U)

fU.display ()
f: U — R
l 1
(z,y) S z2+y2+1
22
. o N T +y
onW: (z,y) e

onAd: (0,¢) +—— —% cos() + %

fV = f.restrict (V)
fv.display ()

f: |4 — R

(m/ /) . $/2+y/2
Y ' $/2+y/2+1
1
onW: (xz,y) +— e
onA: (0,¢) +— —% cos(0) + %

fU(p), fU(S)

(5)
fU.parent ()
c>(U)
fV.parent ()
c> (V)

CU = U.scalar field algebra ()
fU.parent () is CU

True
A scalar field on Sz can be coerced to a scalar field on U, the coercion being simply the restriction:

CU.has coerce map from(CS)

True

fU == CU(f)

True
The arithmetic of scalar fields (operations in the algebra 000(82)):

g = f*f - 2*f
g.set name('g")

g.display ()
2
g: S — R
222424241
. i \ J—
onU: (z,y) 7 o4yt +2 (2241)y2 42 2241

m’4—|—y’4+2 (a:’2+1) y’2—|—2 z'?

onV: (,vy) — —
(7y) 4 $I4+y’4+2 ($12+1)y’2+2 $’2+1

onA: (6,¢) +— %cos (6)” + % cos(f) — %

Vector fields

The set X(S?) of all smooth vector fields on S? is a module over the algebra C'® (S?). It is obtained by
the method vector field module() :

XS = S2.vector field module ()
XS

x (SQ)
print (XS)

Module X (S"2) of vector fields on the 2-dimensional differentiable manifold S”"2

XS.base ring()

o= (%)

XS.category ()

Modulescoo (Sz)

%(Sz) is not a free module:

isinstance (XS, FiniteRankFreeModule)

False

2. . .
because S” is not a parallelizable manifold:

S2.is manifestly parallelizable ()

False

On the contrary, the set X (U') of smooth vector fields on U is a free module:

XU = U.vector field module ()
isinstance (XU, FiniteRankFreeModule)

True
because U is parallelizable:

U.is manifestly parallelizable()

True

Due to the introduction of the stereographic coordinates (, y) on U, a basis has already been defined on
the free module X (U'), namely the coordinate basis (0/0x, 0/0y):

XU.print bases|()

Bases defined on the Free module X (U) of vector fields on the Open subset U of the 2-dim
ensional differentiable manifold S"2:
- (U, (9/8x,90/8y)) (default basis)

eU = XU.default basis ()
eU

0o 0
’ Ei;W Eﬁ;

Similarly

XV = V.vector field module ()
eV = XV.default basis ()
ev

o 0
V7 8%’ 9 6yl
From the point of view of the open set U, el is also the default vector frame:

eU is U.default frame ()

True
Similarly:

eV is V.default frame ()

True

el is also the default vector frame on 82 (although not defined on the whole 82), for it is the first vector

frame defined on an open subset of 82:

eU is S2.default frame ()

True

S2.frames ()

(%)) (“ (@ 5) ((55) (* (5 5))
(4 () (4 (o)) (+ (50-3))

Let us introduce a vector field on S2 by providing its components in the frame el :

v = S2.vector field(l, -2, frame=eU, name='v')
v.display (eU)

0 0
v 2—

~ or Oy

v.parent ()

*(#)

On W, we can express v in terms of the (', y') coordinates:

v.restrict (W) .display(stereoS.restrict (W) .frame (), stereoS.restrict (W))
2 2 0 2 2 0
v:(—ag’ +4x'y'+y')—,+(—2w' —2x'y'+2y') /
Ox Oy

We extend the definition of v to V' thanks to the above expression:

v.add comp by continuation(eV, W, chart=stereoSs)
v.display (eV)

0
v = (—:1:’2 +4zx'y —i—y’2) — + (—2:1:’2 —2z'y —|—2y'2)

ox' oy’

At this stage, the vector field v is defined on the whole manifold S2: it has expressions in each of the two

frames eU and eV , which cover S?.
According to the hairy ball theorem, v has to vanish somewhere. This occurs at the North pole:

vN = v.at (N)
print (vN)

Tangent vector v at Point N on the 2-dimensional differentiable manifold S*2

vN.display ()

v=20
U\N is the zero vector of the tangent vector space TNSQ:

vN.parent ()

Tn S

vN.parent () is S2.tangent space (N)
True

vN == S2.tangent space (N) .zero ()
True

On the contrary, v is non-zero at the South pole:

vS = v.at(9)
print (v)

Vector field v on the 2-dimensional differentiable manifold S$S72

vS.display ()
0,0
U_am_ay

Let us plot the vector field v is terms of the stereographic chart (U, (33, y)) with the South pole S

superposed:

v.plot (chart=stereoN, chart domain=stereoN, max range=4,
number values=5, scale=0.5, aspect ratio=1) \
+ S.plot (stereoN, size=30, label offset=0.2)

Y

L -

|]

[
/‘”

]

Y

The vector field appears homogeneous because its components w.r.t. the frame () are constant:

9 90
Oz’ Oy
v.display (stereoN. frame ())

0 0

v = Ei; —'22%;

On the contrary, once drawn in terms of the stereographic chart (V, (w', y')) v does no longer appears
homogeneous:

v.plot (chart=stereoS, chart domain=stereoS, max range=4, scale=0.02,
aspect ratio=1) \
+ N.plot (chart=stereoS, size=30, label offset=0.2)

spher,

chart domain

cartesian, mapping=Phi,

number values

graph v = v.plot (chart

scale=0.2)

11,

graph spher + graph v

\ NN S
adl
,ﬁ.‘.ﬂ_ﬂﬂ«m&_ T
"N ; ¢

LAy

Vs
x..»i‘.‘oﬂ, N

stereoN. frame ()

(v (3))

ex = stereoN.frame () [1]
ex

0
Ox

graph ex = ex.plot(chart=cartesian, mapping=Phi, chart domain=spher,
number values=11, scale=0.4, width=1,
label axes=False)

graph spher + graph ex

_

R

S

.
T

W

"

ey = stereoN.frame () [2]
ey

Ay
graph ey = ey.plot(chart=cartesian, mapping=Phi, chart domain=spher,
number values=11, scale=0.4, width=1, color='red',

label axes=False)
graph spher + graph ey

graph frame = graph spher + graph ex + graph ey \
+ N.plot (cartesian, mapping=Phi, label offset=0.05, size=5)
+ S.plot (cartesian, mapping=Phi, label offset=0.05, size=5)
graph frame + sphere(color='lightgrey', opacity=0.4)

show (graph_frame + sphere (opacity=0.5), viewer='tachyon', figsize=10)

Vector fields acting on scalar fields

v and f are both fields defined on the whole sphere (respectively a vector field and a scalar field). By the
very definition of a vector field, v acts on f:

vEi = v (f)
print (vf)
vf.display ()
Scalar field v (f) on the 2-dimensional differentiable manifold S"2
2
v(f): S — R
2 (z—2y)
onU: (z,y) +—

o o4yt +2 (2241)y%+2 2241

Vi («,y) 2 (e 20"y 20)
onV: (z',y) r—

o'yt 42 (22 41)y 2 +2 27 +1

ond: (0,¢) +— % ((cos(¢p) — 2 sin(¢)) cos(8) — cos(¢p) + 2 sin(¢)) sin(6)

Values of v(f) at the North pole, at the South pole and at point p:

v (N)

0

vE(S)

0

vt (p)
1

6
1-forms

A 1-form on 82 is a field of linear forms on the tangent spaces. For instance it can be the differential of a
scalar field:

f.display ()

2
f: S — R

. I \ 1
onU: (z,y) v}
12 12

! T +y

onV: (x —
(Y) 4 $’2+y’2+1

onA: (6,¢) +— —% cos(f) + %

df = diff (f)
print (df)

l1-form df on the 2-dimensional differentiable manifold S72

df.display() # display w.r.t. the default frame

df i dz + 2y
= —_ €T —_
o+ yt+2(22+1)y2 +222+1 zt+yt +2(@22+1D)y? +222+1

df .display (eV)

df 24! da’
— xX
't +y’4 + 2 (56’2 + 1)y’2 +22% +1

2 ,
T 4 4 2 2 2 dy
' +y +2(:U’ —|—1)y’ +22° +1

df.display (spher.frame ())

df = Q—Vy a6
2 +y2+1

df .display (spher.frame (), spher) # asking for the components to be shown in the spheric

1
df = 3 sin(#)do

print (df.parent ())

Module Omega”l(S"*2) of 1l-forms on the 2-dimensional differentiable manifold S”2

df .parent ()

Q! (s?)
The 1-form acting on a vector field:

print (df (v))
df (v) .display ()

Scalar field df(v) on the 2-dimensional differentiable manifold S"2
df (v): S? — R
2 (z—2y)
a zt+yt+2 (22+1)y?+2 22+1
2<mﬁ72mﬂyﬁ+dyﬂ72yﬁ)

~

onU: (z,y)

onV: (z',y)

~

N a4yt 42 (af:’2+1)y’2—|—2 2?41
onA: (0,¢) +— % ((cos(¢p) — 2 sin(¢)) cos(8) — cos(¢p) + 2 sin(¢)) sin(6)

Let us check the identity d f(v) = v(f):

df (v) == v (f)

True

Similarly, we have L, f = v(f):

f.lie derivative (v) == v (f)

True

Curves in S?

In order to define curves in Sz, we first introduce the field of real numbers R as a 1-dimensional smooth
manifold with a canonical coordinate chart:

R.<t> = manifolds.Realline ()
print (R)

Real number line R

print (R.category())

Category of smooth connected manifolds over Real Field with 53 bits of precision
dim (R)

1

R.atlas ()

(R, (£))]

Let us define a loxodrome of the sphere in terms of its parametric equation with respect to the chart

spher = (Aa (67 ¢))
c = S2.curve ({spher: [2*atan(exp(-t/10)), tl}, (t, -oo, +00), name='c')
Curves in 82 are considered as morphisms from the manifold R to the manifold SZ:
c.parent ()
2
Hom (R, S)
c.display()
c: R — §?

RN (x,y):<cos(t)e(%t),e(%f) sin(t)>

t — (0,¢):<2 arctan(e(‘%t)),t)

The curve ¢ can be plotted in terms of stereographic coordinates (, y):

c.plot (chart=stereoN, aspect ratio=l)

Y

—

2.0

1.5 -

S

& c R3

graph ¢ = c.plot (mapping=Phi, max range=40, plot points=200,
thickness=2, label axes=False)
graph spher + graph c

1.0¢
z=0.
l.00 -1 n
y=0. 0 x=0.0
c
vc = c.tangent vector field()
ve
/
C
c R S?
print (vc)
R S? c:R—§?
X(R,c) C=(R)

vc.parent ()

X (R,c)

vc.parent () .category ()

Modulesc (r)

vc.parent () .base ring/()
> (R)
A coordinate view of ¢’

vc.display ()

= (1_10 COS(t)e%t) — 6<1L°t) sin(t)) 3% + (cos(t)e<%t> 4 % e(%t) sin(t)) gy

Let us plot the vector field ¢’ in terms of the stereographic chart (U, (z,y)):

show (vc.plot (chart=stereoN, number values=30, scale=0.5, color='red') +
c.plot (chart=stereoN), aspect ratio=l)

Y
2.5

2.0

1.5

£
—r [rrrrrrrrr LINNL B B N B B L B
-1
A 3D view of ¢ is obtained via the embedding ®:
graph vc = vc.plot (chart=cartesian, mapping=Phi, ranges={t: (-20, 20)},

number values=30, scale=0.5, color='red',
label axes=False)
graph spher + graph ¢ + graph vc

h = R3.metric()
h.display ()

h=dX®dX+dY @dY +dZ ®dZ
g S? h

g = S2.metric('g")
g.set (Phi.pullback(h))
print (g)

print (g.parent ())

g.tensor type ()

(0,2)

g.symmetries ()

symmetry: (0, 1); no antisymmetry
The expression of the metric in terms of the default frame on S2 (stereoN):
g.display ()

4
I= (x4+y4—|—2(m2+1)y2+2x2+1

)daz@dx

4
+ dy®d
(:c4+y4—|—2(:c2—|—1)y2+2a:2—|—1) yoay

We may factorize the metric components:

g.apply map (factor, frame=eU, keep other components=True)
g.display ()

4

4
g= dz ® dz + dy ® dy
(22 +y2 +1)° (22 +y2 +1)*

A matrix view of the components of g in the manifold's default frame:

gl:]
_ 4 0
(e2+y>+1)°
_ 4
(22 +12+1)°
gl1,1]
4

(@2 +y2 +1)°

Display in terms of the vector frame eV = (V, (395/, 3yf)):

g.apply map(factor, frame=eV, keep other components=True)
g.display (eV)

. 4 dz’ / 4 / /
g= ydz ®de’ + —————dy ®dy
(= +y?+1) (2 +y* +1)

Expression of the metric tensor in terms of spherical coordinates:

g.display (spher.frame (), chart=spher)
g =df ® df + sin (0)°d¢ ® d¢

The metric acts on vector field pairs, resulting in a scalar field:

print (g (v,v))

Scalar field g(v,v) on the 2-dimensional differentiable manifold S"2

g(v,v) .parent ()

o= (%)

g(v,v) .display()

g(v,v): S? — R
20
4yt +2 (2241)y%+2 22+1

20 <m14+2 m/2y/2+y/4)
oty 42 (z7+1)y 2 +2 22 +1

ond: (6,¢) +—— 5 cos(6)®—10cos(d)+5

onU: (z,y)

~

~

onV: (2,y)

The Levi-Civita connection associated with the metric g:

nabla = g.connection ()
print (nabla)
nabla

Levi-Civita connection nabla g associated with the Riemannian metric g on the 2-dimensio
nal differentiable manifold S*2

‘79
As a test, we verify that Vg acting on g results in zero:

nabla (g) .display ()
V=0

The nonzero Christoffel symbols of g (skipping those that can be deduced by symmetry on the last two
indices) w.r.t. two charts:

g.christoffel symbols display (chart=stereoN)

P00 = —mimi
2
Iﬁrmy - __ZEEZ%IT
Ty = #;H
2
I’ = w
I‘ywy - _x2fyz2+1
2
My = _W‘ZH

g.christoffel symbols display(chart=spher)
0

I,y = —cos(6)sin(6)
¢ _ cos(f)
I b6 — sin(6)

V 4 acting on the vector field v:

print (nabla (v))

Tensor field nabla g(v) of type (1,1) on the 2-dimensional differentiable manifold S"2

nabla (v) .display (stereoN. frame ())

> +y?>+1) Ox > +y?+1) Ox
22z +y 0 2(x—2y 0
() — ®dx+ | — () — ®dy
24+y2+1) Oy 24+y?+1) Oy
nabla (v) [:]

22y 2(2z+y)
i 4y?4+1 2y +1
2 (2z+y) 2(z—2y)
i 4y?+1 24y’ +1

Curvature

The Riemann tensor associated with the metric g:

Riem = g.riemann ()
print (Riem)
Riem.display ()

Tensor field Riem(g) of type (1,3) on the 2-dimensional differentiable manifold S"2

4 0
Ri - dy®de®d
fem (g) <w4+y4+2(w2—|—1)y2—|—2x2+1> oy DY@y

4
+ —
(oyt +2(22+1)y?+ 222 +1

0
) Rdy®dy ® dx
ox

4
= ~ @dz®dr®d
+(x4—i—y4—|—2(m2—i—1)y2+2x2+1) gy BorOdredy

N 4) dr@dy®d
e x T
e+ yt+2(22+1)y?+222+1) Oy Y

The components of the Riemann tensor in the default frame on 82:

Riem.display comp ()

Riem(g)” = :

yzTy 24yt +2 (2241)y%+2 22+1
Riem(g)*,,, = - 2 ($2i1)y2+2 2241
Riem(g)",,, = —7r (mzil)y2+2 27 +1
Riem(g) ! zyr T Aigtio (inl)y2+2 241

The components in the frame associated with spherical coordinates:

Riem.display comp (spher.frame (), chart=spher)

Riem(g) 0¢0¢ — sin(0)°

Riem(g) 9¢¢0 — —sin(6)°
Riem(g) ¢99¢ = -1
Riem(g) ¢9¢0 = 1

print (Riem.parent ())

Module T"(1,3) (S"2) of type-(1,3) tensors fields on the 2-dimensional differentiable man

ifold S”2
Riem.symmetries ()

no symmetry; antisymmetry: (2, 3)

The Riemann tensor associated with the Euclidean metric h on R3 is identically zero:

h.riemann () .display ()
Riem (h) =0
The Ricci tensor and the Ricci scalar:

Ric = g.ricci()
Ric.display ()

4
Ri = d d
ic(g) <:c4—|—y4+2(:c2+1)y2—|—2a:2+1> T®dr
4
+ dy®d
(az4—|—y4—|—2(332+1)y2—|—2a:2—|—1) 4 4

print (g.inverse())

Tensor field inv_g of type (2,0) on the 2-dimensional differentiable manifold S"2

g.inverse () .display ()

1 1 1 1 1\ o 9]

-1 4 4 2 2 2

g ==z —y — (22 + 1)y Zr) 9 =
(4 4 2() 2 4)

+(Z:p +7Y +5(x + 1)y tsT)55

R = g.ricci scalar()
R.display ()

r(g): S —
onU: (z,y) +r—
onV: (d,y) r—
onA: (0,¢) +—

l\Dl\DL\D%

2

Hence we recover the fact that (S°, g) is a Riemannian manifold of constant positive curvature.

In dimension 2, the Riemann curvature tensor is entirely determined by the Ricci scalar R according to

) R, . .
Ry = B} (&kgﬂ - 51191‘1@)

Let us check this formula here, under the form Rijlk = _jo[k(;i”:

delta = S2.tangent identity field()
Riem == - R*(g*delta).antisymmetrize (2, 3)

True
Similarly the relation Ric = (R/2) g must hold:

Ric == (R/2)*g

True

Manifold orientation and volume 2-form

In order to introduce the volume 2-form associated with the metric g, we need to define an orientation on S2
first. We choose the orientation so that the vector frame (0/0z’, 8/8y’) of the stereographic coordinates
from the South pole is right-handed. This is somewhat natural, because the triplet (0/9z’,8/8y’, n),
where 1 is the unit outward normal to 52, is right-handed with respect to the standard orientation of R?’. On
the contrary the triplet (0/0x, @/ By, n) formed from stereographic coordinates from the North pole is left-
handed (see the above plot). Actually, we can check that (8/0xz, 8/dy) and (8/0z', 0/dy’) lead to two
opposite orientations, because the transition map (z,y) +— (', y’) has a negative Jacobian determinant:

stereoN to S.jacobian det ()

1
_zc4—|—2:c2y2—|-y4

We define the orientation via the method set orientation() with a list of right-handed vector frames,
whose domains form an open cover of S*. We therefore provide eV = (0/dz',d/8y’) (domain: V) and
the "reversed" frame (0/0y, 0/0z) on U:

reU = U.vector frame('f', (eU[2], eU[1l]))
reU[1l] .display(eU), reU[2].display (elU)

0 0
<f1 = 8_y’f2 = %)

S2.set orientation([eV, reU])

The volume 2-form or Levi-Civita tensor associated with g is then

eps = g.volume form()
print (eps)
eps.display ()

2-form eps g on the 2-dimensional differentiable manifold S"2

4
= (- dx Ad
s (w4+y4+2(m2+1)y2—|—2x2+1> vy

Notice the minus sign in the the above expression, which reflects the fact that the default frame

(0/0x,0/0y) is left-handed. On the contrary, we have

eps.display (eV)

4
€, = dz' A dy'
I :c’4—|—y’4+2(x'2+1)y’2+2x’2+1

A nicer display is obtained by factorizing the components:

eps.apply map (factor, frame=eV, keep other components=True)
eps.display(stereoS.frame())

— 4 dl /
€g = x ANdy

(.’13/2 + y,2 + 1)2

The frame associated with spherical coordinates is right-handed and we recover the standard expression of
the volume 2-form:

eps.display (spher.frame (), chart=spher)
€, = sin(0)dd A d¢
The exterior derivative of the 2-form €g:

print (diff (eps))

3-form deps g on the 2-dimensional differentiable manifold S"2

Of course, since SQ has dimension 2, all 3-forms vanish identically:

diff (eps) .display ()

dey =0

Non-holonomic frames

Up to know, all the vector frames introduced on 82 have been coordinate frames. Let us introduce a non-
coordinate frame on the open subset A. To ease the manipulations, we change first the default chart and
default frame on A to the spherical coordinate ones:

A.default chart()
(4, (z,9))

A.default frame ()

(4 (5w))

A.set default chart (spher)
A.set default frame (spher.frame())
A.default chart()

(4, (6,9))

A.default frame ()

Cla)

We introduce the new vector frame e = (—

0 .
00’ sinf 0¢ |-
spher.frame () [:]
0 0
00’ 0¢
d dth, d dph = spher.frame() [:]
e = A.vector frame('e', (d_dth, 1/sin(th)*d_dph))

print (e)
e

Vector frame (A, (e _l,e 2))

(fl,(€1,€2))
(e[l] .display (), el[2].display())
0 1 0
€1 = 572 = "N AL
00’ sin(0) 0¢
The new frame is an orthonormal frame for the metric g:

g(el[l]l,e[l]) .expr()

G 1)

g.display (e)

g:el®el+e2®e2

eps.display (e)

€g = el A e?

It is non-holonomic, since its structure coefficients are not identically zero:

e.structure coeff () [:]

o000, 5] - |55

e[2] .lie derivative(e[1l]) .display (e)
cos(6)
sin(6)

€3

while we have of course

spher. frame () .structure coeff () [:]

10,01, 10,0]], [0,0], [0, 0]]

Using SymPy as the symbolic backend

By default, the symbolic backend used in calculus on manifolds is SageMath's one (Pynac + Maxima),
implemented via the symbolic ring SR . We can choose to use SymPy instead:

S2.set _calculus _method('sympy"')

F = 2*%f
F.display ()
2
S — R
. X 2
onU : (:E, y) — z2+y2+1
2(zp*+yp?)
. / !
on V ° (‘r'C 7y) $p2+yp2+1

onA: (0,¢) +— 1—cos(th)
F.expr ()

2/ (x**2 + y*x2 + 1)

type (F.expr())

<class ’sympy.core.mul.Mul’>
Back to Sage's default:
S2.set calculus_method('SR")

F.expr ()

2
2 +y2+1

type (F.expr())

<class ’sage.symbolic.expression.Expression’>

Going further

https://www.sympy.org/

See the notebooks Smooth manifolds, charts and scalar fields and Smooth manifolds, vector fields and
tensor fields from the lectures Symbolic tensor calculus on manifolds. Many example notebooks are
provided at the SageManifolds page.

See also the series of notebooks by Andrzej Chrzeszczyk: Introduction to manifolds in SageMath, as well as
the tutorial videos by Christian Bar: Manifolds in SageMath.

https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/master/Worksheets/JNCF2018/jncf18_scalar.ipynb
https://nbviewer.org/github/sagemanifolds/SageManifolds/blob/master/Worksheets/JNCF2018/jncf18_vector.ipynb
https://sagemanifolds.obspm.fr/jncf2018/
https://sagemanifolds.obspm.fr/examples.html
https://sagemanifolds.obspm.fr/intro_to_manifolds.html
https://www.youtube.com/playlist?list=PLnrOCYZpQUuJlnQbQ48zgGk-Ks1t145Yw

