Amplitude factors \(Z^\infty_{\ell m}(r)\)¶
Functions \(Z^\infty_{\ell m}(r)\) giving the amplitude of the gravitational radiation emitted by a particle on a circular orbit at radius \(r\) about a Kerr black hole.
REFERENCES:
S. A. Teukolsky, Astrophys. J. 185, 635 (1973)
S. Detweiler, Astrophys. J. 225, 687 (1978)
M. Shibata, Phys. Rev. D 50, 6297 (1994)
D. Kennefick, Phys. Rev. D 58, 064012 (1998)
S. A. Hughes, Phys. Rev. D 61, 084004 (2000) [doi:10.1103/PhysRevD.61.084004]
E. Gourgoulhon, A. Le Tiec, F. Vincent, N. Warburton, Astron. Astrophys. 627, A92 (2019) [doi:10.1051/0004-6361/201935406]; Arxiv 1903.02049
- kerrgeodesic_gw.zinf.Zinf(a, l, m, r, algorithm='spline')¶
Amplitude factor of the mode \((\ell,m)\).
The factor \(Z^\infty_{\ell m}(r)\) is obtained by spline interpolation of tabulated numerical solutions of the radial component of the Teukolsky equation.
INPUT:
a
– BH angular momentum parameter (in units of \(M\), the BH mass)l
– integer >= 2; the harmonic degree \(\ell\)m
– integer within the range[-l, l]
; the azimuthal number \(m\)r
– areal radius of the orbit (in units of \(M\))algorithm
– (default:'spline'
) string describing the computational method; allowed values are'spline'
: spline interpolation of tabulated data'1.5PN'
(only fora=0
): 1.5-post-Newtonian expansion following E. Poisson, Phys. Rev. D 47, 1497 (1993) [doi:10.1103/PhysRevD.47.1497], with a minus one factor accounting for a different convention for the metric signature.
OUTPUT:
coefficient \(Z^\infty_{\ell m}(r)\) (in units of \(M^{-2}\))
EXAMPLES:
sage: from kerrgeodesic_gw import Zinf sage: Zinf(0.98, 2, 2, 1.7) # tol 1.0e-13 -0.04302234478778856 + 0.28535368610053824*I sage: Zinf(0., 2, 2, 10.) # tol 1.0e-13 0.0011206407919254163 - 0.0003057608384581628*I sage: Zinf(0., 2, 2, 10., algorithm='1.5PN') # tol 1.0e-13 0.0011971529546749354 - 0.0003551610880408921*I
- kerrgeodesic_gw.zinf.Zinf_Schwarzchild_PN(l, m, r)¶
Amplitude factor of the mode \((\ell,m)\) for a Schwarzschild BH at the 1.5PN level.
The 1.5PN formulas are taken from E. Poisson, Phys. Rev. D 47, 1497 (1993), doi:10.1103/PhysRevD.47.1497.
INPUT:
l
– integer >= 2; the harmonic degree \(\ell\)m
– integer within the range[-l, l]
; the azimuthal number \(m\)r
– areal radius of the orbit (in units of \(M\), the BH mass)
OUTPUT:
coefficient \(Z^\infty_{\ell m}(r)\) (in units of \(M^{-2}\))
EXAMPLES:
sage: from kerrgeodesic_gw import Zinf_Schwarzchild_PN sage: Zinf_Schwarzchild_PN(2, 2, 6.) # tol 1.0e-13 -0.00981450418730346 + 0.003855681972781947*I sage: Zinf_Schwarzchild_PN(5, 3, 6.) # tol 1.0e-13 -6.958527913913504e-05*I